

LINEAR MOTION GUIDE

Linear Motion Guide Contents

1	Linear Motion Guide 1. Features	2
2	Selection of Linear Motion Guide 1. Overview	
3	Life Calculation 1. Load rating and life	
4	Rigidity & Preload 1. Preload16 2. Radial clearance17	-
5	Friction 1. Friction	
6	Precision1. Precision specification202. Precision design203. Dimension tolerance and difference204. Selection of precision class24)
7	Lubrication1. Purpose2. Selection of lubricant3. Grease lubrication4. Oil lubrication	5
8	Surface Treatment	

1.	Surface Treatment	28
2.	Types of surface treatment	28

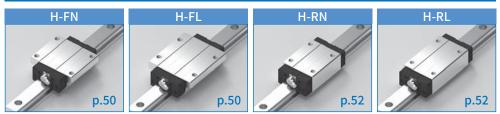
9 Dust Proof

1. Dust proof2	8
2. Types of dust proof2	8

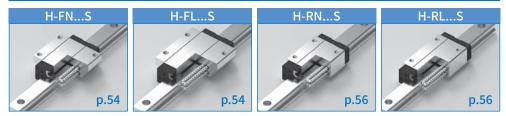
10	Measures for Use in Special Environ- ments	29
Ξ	Placement & Installation 1. Placement and structure 2. Mounting and fixing 3. Design of the mounting surface for installation 4. Tolerance of the mounting side for installation 5. Description of the datum plane for installation 6. Rail connection 7. Installation 8. Torque used for fastening bolts in assembly 9. Bolt fastening direction by linear motio guide type	30 31 32 35 38 39 40 44 n
12	Types of Linear Motion Guide 1. Linear Motion Guide H Series	46 58 54 54 54 76 82 IB 82
13	Options 1. Seal and rail cap	00 04 05

14 Precautions for Handling Linear Motion Guide

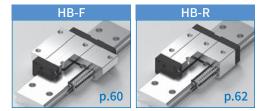
1. Handling	
2. Lubrication	
3. Caution for use	
4. Storage	108


Appendix Contents

7


1	Conversion Table from International System of Units (SI)	318
2	N-kgf Conversion Table	320
3	kg-lb Conversion Table	321
4	Hardness Conversion Table	322
5	Dimensional Tolerance of Shaft	324
6	Dimensional Tolerance of Housing Hole	326
7	Usage Example of Linear Motion Guide	328
8	Usage Example of Crossed Roller Bearing	336

WON ST CO., LTD.


Linear Motion Guide - H series

Spacer Chain Guide - H...S series


Wide Linear Motion Guide - HB series

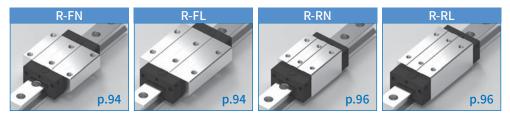
Slim Linear Motion Guide - S series

Slim Spacer Chain Guide - S...S series

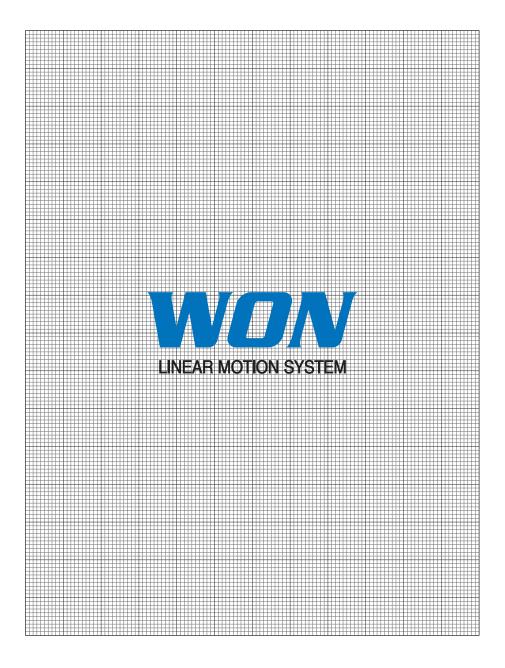
Slim Linear Motion Guide - HS series

Slim Spacer Chain Guide - HS...S series

WON ST CO., LTD.


Miniature Linear Motion Guide - M series

Miniature Wide Linear Motion Guide - MB series



Roller Linear Motion Roller Guide - R series

Slim Roller Linear Motion Roller Guide - RS series

1 WON Linear Motion Guide

1. Features

WONLinear Motion Guide is a linear motion bearing with the structure in which rolling elements such as balls or rollers softly circulate the inner part of a block that can make an infinite linear motion along the raceway surface of a rail.

The device is able to do rolling motion ideally, bearing high load and 4-direction equal load with high rigidity. With its auto-adjusting ability, the linear motion guide is excellent at error-absorbing and improves its precision after assembly. Since it has low frictional force and less abrasion, it is possible to maintain precision long and to drive silently at high-speed running.

2. Strengths

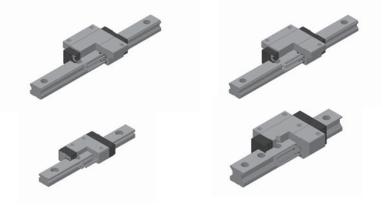
1) Able to make precise positioning

Since there is less difference between static friction and kinetic friction as well as in speed-induced friction fluctuation, it excellently responds even to micro-migration, allowing precise positioning and high-speed running.

2) Able to maintain stable precision for a long time

Less friction coefficient and wear due to ideal rolling motion makes it possible to maintain stable precision for a long time.

3) Able to eliminate clearance or increase rigidity by preloading


It is possible to eliminate clearance by using rolling elements such as a ball or a roller, or to increase rigidity of Linear Motion Guide by preloading.

4) Simple lubrication

Lubrication is simple, and it is convenient to maintain the device with grease or oil.

5) Able to make compact equipment and save the cost for operating electricity

The device is able to bear high load with high rigidity and has low friction. Therefore, it is possible to design compact and miniaturized equipment and to save manufacturing costs and energy.

3

WON ST offers various types of linear motion guide from miniature types to general ball linear motion guide to low-noise linear motion guide to ultra-high rigid roller linear motion guide. Since each one supports different shapes and sizes according to service conditions, you can select the optimal linear motion guide suitable for each usage.

Linear Motion Guide		 World standard ball linear motion guide 4-direction equal load type with 45° contact angle Great error-absorbing ability with D/F combination Linear motion with high rigidity and high precision through ideal rolling motion
Wide Linear Motion Guide		 4-direction equal load type with 45°con- tact angle; a low-centered structure with a wide and short rail; the moment working at a narrow space; usable as an one-axis type where high rigidity is required; a de vice with linear motion
Spacer Chain Linear Motion Guide	R	 World standard ball linear motion guide 4-direction equal load type with 45°contact angle Great error-absorbing ability with D/F com bination A spacer ball chain based retainer type; a linear motion device generating low noise and low dust
Miniature Linear Motion Guide	and the	 Miniature high-rigidity Various shapes and sizes A compact linear motion device with high durability and reliability
Roller Linear Motion Guide		 Roller-enabled ultra-rigid linear motion guide 4-direction equal load type with 45°contact angle Able to run reliably for a long time through rolling motion having the wide contact surface A linear motion device with high rigidity and high precision, and bearing high load

2 Selection of Linear Motion Guide

1. Overview

Д

To select a linear motion guide, it is necessary to identify the details of requirements, prioritize them, and then choose the one that meets the service conditions.

2. Procedure

NA

3 Life Calculation

1. Load rating and life

1) Life

If external load is applied to linear motion guide in driving, fatigue fracture occurs due to the stress made as load is repeatedly applied to the raceway surface and rolling elements, and peeling off scale-like flakes (flaking) arises. Life of a linear motion guide refers to a total driving distance until the point that flaking arises due to initial fatigue fracture.

- A linear motion guide can have defects earlier than the time of normal flaking caused by its wear or fatigue in the following cases:
 - a. Excess load by the imprecise assembly following a difference in temperature or tolerance
 - b. If a linear motion guide is contaminated with foreign substances
 - c. Driving with insufficient lubrication
 - d. Reciprocating motion in a very short distance in the form of vibration or wave during halting or driving
 - e. Excessive load imposed on a linear motion guide
 - f. Deformation of plastic end-plate

2) Rating fatigue life L

Generally linear motion guide does not always have an equal life span even though its products are manufactured in the same way, because of the difference in scattering of original fatigue of rawmaterial. For this reason, the reference value of life of a linear motion guide is defined as the rating fatigue life which is a total driving distance that 90% of linear motion guides in one group with the same specifications can reach without flaking at the time when all in the group run under the same conditions.

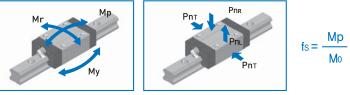
3) Basic dynamic load rating C

Basic dynamic load rating is a ability of linear motion guide to bear load, which represents an appli cable constant load in direction and magnitude when the rated fatigue life is 50Km. The reference value of basic of WON linear motion guide dynamic load rating is 50Km (ball type) and 100Km (roller type), respectively. It is used for calculating of life a linear motion guide while driving under constant load in magnitude from the center of a block to bottom. Each value of basic dynamic load rating (C) is described in the catalogue

4) Basic static load rating Co

If a linear motion guide is applied by excessive load or instantly by big impact load, partially perma nent deformation occurs between a rolling element and the raceway surface. If deformation reaches to a certain extent, it hinders smooth driving.

Basic static load rating is defined as the constant static load in direction and magnitude when the total permanent deformation of the raceway surface of block and rail and of a rolling element like a ball or a roller is 0.0001 times bigger than the diameter of the rolling element. In a linear motion guide, it refers to the load applied from top to bottom based on the center of a block.

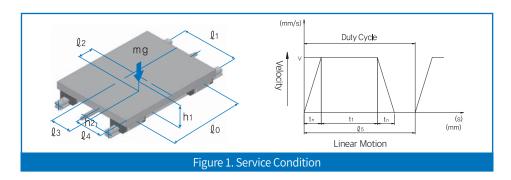

Each value of basic static load rating (C0) is described in the specification table.

5) Static allowable moment Mo

Moment load can be imposed on a linear motion guide. At this time, a ball or a roller both at the ends is most stressed due to the stress distribution of a ball or a roller as a rolling element in the linear motion guide. Static allowable moment (M0) refers to the constant moment load in direction and magnitude when the total permanent deformation of a ball or roller, a rolling element to which the biggest stress is applied, and of the raceway surface of a block or rail is less than 0.0001 of the diameter of the rolling element. Moment values of three directions (Mp, My, Mr) are described in the catalogue. Static allowable moment (M0) and static moment load rating (Mp) can be reviewed with application of safety factor (fs)

Directions of load and moment

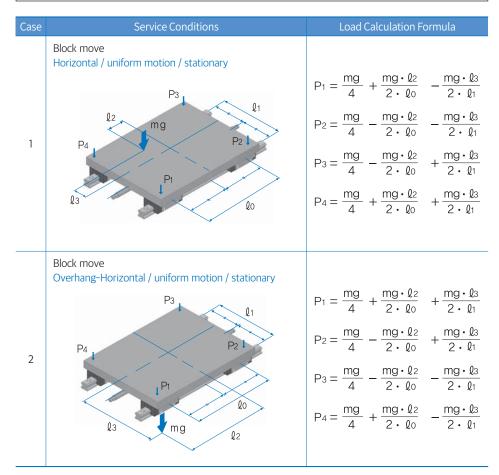
Δ

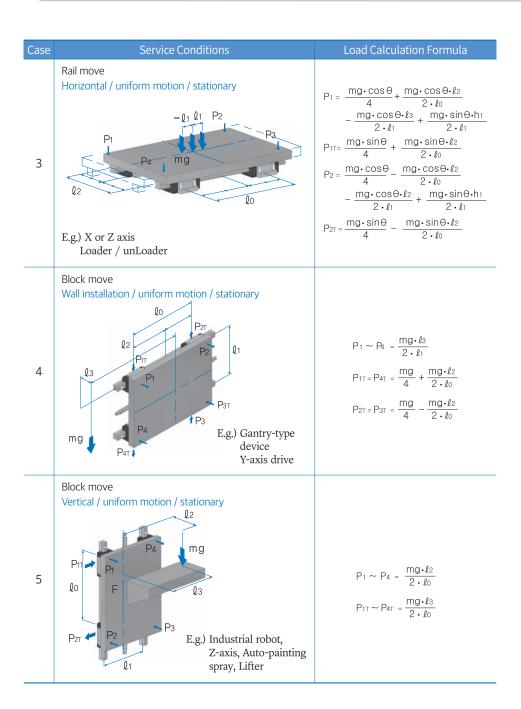

2. Load calculation

A linear motion guide bears basic dynamic load rating (C) and basic static load rating (Co). Neverthe less, it also needs to bear compression load applied from top to down due to inertia force created by the center of gravity, positioning thrust, acceleration, cutting force, and deceleration as well as various loads including tensile load, horizontal load, and moment load, depending on the service conditions. In this case, load of the linear motion guide changes. To select a linear motion guide, it is required to review these conditions and calculate a proper load.

3. Service condition setting

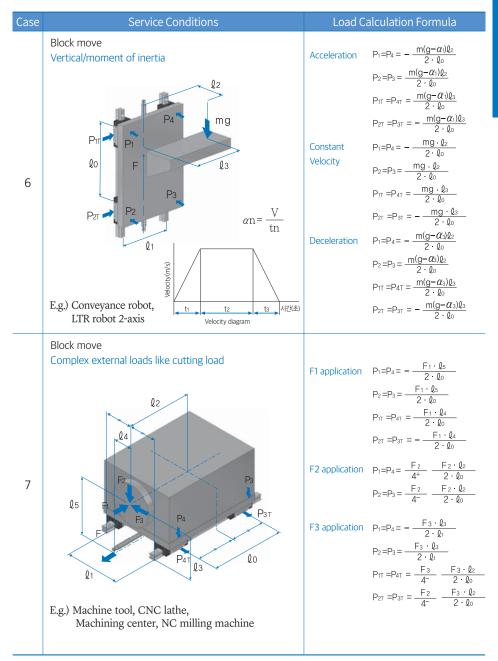
Service conditions necessary for calculating the load and life of a linear motion guide.

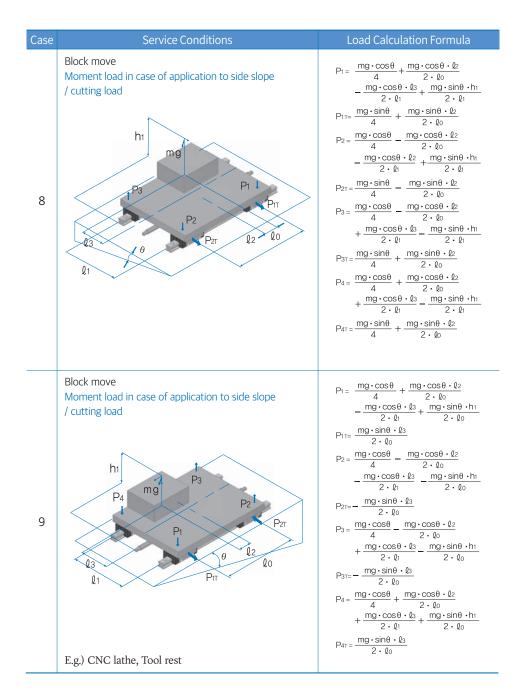

① Mass: V(mm/s) m(kg) 6 Velocity diagram Velocity : ② Applicable load direction : Time constant : tn(s) ③ Point of application : l₂, l₃, h₁(mm) Acceleration : $\alpha n(mm/s^2)$ (center of gravity) $N_1(min^{-1})$ ⑦ No. of reciprocating motions per minute : ⑧ Stroke : ④ Point of thrust: ℓ4. h2(mm) Ls(mm) (5) Composition of linear motion guide : l_0 , l_1 (mm) (9) Avg. velocity : Vm(m/s) (No. of blocks & rails) ① Required life : Lh(h)

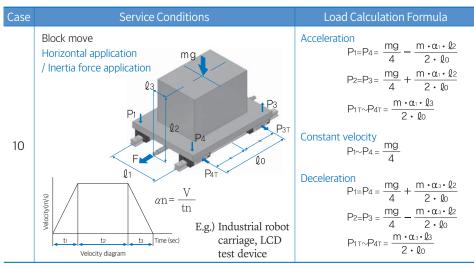

4. Load calculation formula

The load applied to a linear motion guide changes depending on external forces such as the center of gravity, position of thrust, acceleration, and cutting resistance. To select a linear motion guide, it is required to calculate the load applied to a block in full consideration of the conditions shown below.

m : Mass ln : Mass Fn : Thrust Pn : Load (vertical, reverse-vertical)	(mm) (N)	g : Acceleration of gravity (g : 9.8m/s ²) V : Velocity tn : Time constant α_n : Velocity	(m/s ²) (m/s) (s) (m/s ²)
Pn : Load (vertical, reverse-vertical) Pnr : Load (horizontal)	(N) (N)	an : Velocity	(m/s²)

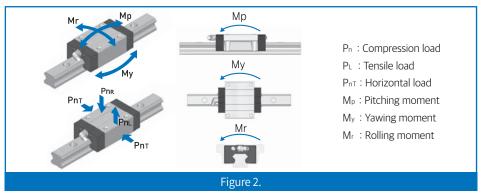



Α


WON ST CO., LTD.

WON ST CO., LTD.

5. Equivalent load calculation


There are diverse kinds of load imposed on a block in a linear motion guide, such as compression load in vertical direction, tensile load, horizontal load, and moment load. There is also complex load of them. Sometimes the magnitude and direction of load change. Since it is difficult to calculate the variable load when calculating the life of the linear motion guide, it is required to use the equivalent load converted into the compression load or tensile load in vertical direction in order to calculate the life or static safety factor.

6. Equivalent load calculation formula

If a linear motion guide bears vertical compression load or tensile load or horizontal load simul taneously, or if the magnitude or direction of load changes, an equivalent load is calculated in the following formula.

 $P_E(Equivalent load) = P_n + P_{nT}$

7. Static safety factor calculation

Any unexpected big load may be applied to a linear motion guide due to the inertia force caused by vibration impact or quick braking and moment load of mechanical structure. To select a linear motion guide, it is required to take into account static safety factor and prepare for such load. Static safety factor (fs) is the value obtained by dividing basic static load rating by the calculated load. To see the baseline of static safety factor by service condition, please see Table 1–1 and Table 1–2.

Type of rolling element	Service condition	Static safety factor (fs)
	There are no vibration and impacts.	1.0 ~ 1.5
Ball	High driving performance is needed.	1.5 ~ 2.0
	There are moment load, violation, and impacts.	2.5 ~ 7.0
	There are no vibration and impacts.	2.0 ~ 3.0
Roller	High driving performance is needed.	3.0 ~ 5.0
	There are moment load, violation, and impacts.	4.0 ~ 7.0

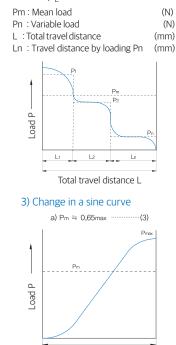
Table 1-1. Baseline of static safety factor(fs)

Table 1-2.

If compression load is big	$\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{0}}{P_{n}} \geq f_{S}$
If tensile load is big	$\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot Co_{L}}{P_{L}} \geq f_{S}$
If horizontal load is big	$\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{OT}}{P_{nT}} \geq f_{S}$

- fs : Static safety factor
- Co : Basic static load rating(vertical) (N)
- CoL : Basic static load rating (reverse-vertical) (N)
- Cot : Basic static load rating (horizontal) (N)
- Pn : Calculated load (vertical) (N)
- P_L : Calculated load (reverse-vertical) (N)
- Pnt : Calculated load (horizontal) (N)
- fн : Hardness factor
- f T : Temperature factor
- fc : Contact factor

8. Mean load calculation


The load applied to a block of a linear motion guide is not constant but differs according to service conditions. Therefore, the load that becomes equal to life under the condition of variable load is used. This is called mean load. If the load applied to the block is changed due to an external condition, it is required to calculate a life with the mean load in consideration of the various conditions shown below. If load applied to block varies in different conditions, it is necessary to a life in consideration of the condition of variable load. Mean load (Pm) refers to constant load that becomes equal to the life under the conditions of variable load when the load applied to a block changes in various conditions while the device is driving.

$$\mathsf{P}_{\mathsf{m}} = \sqrt{\frac{1}{\mathsf{L}} \cdot \sum_{\mathsf{n}=1}^{\mathsf{n}} (\mathsf{P}_{\mathsf{n}}^{i} \cdot \mathsf{L}_{\mathsf{n}})}$$

Pm : Mean load		(N)
Pn	: Variable load	(N)
L	: Total travel distance	(mm)
Ln	: Travel distance by loading Pn	(mm)
i	: Ball - 3. Roller - 10/3	

Note) the formula above or formula (1) below is applied to a ball type only.

1) Change in phase $P_{m} = \sqrt[3]{\frac{1}{L}(P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} + P_{n}^{3} \cdot L_{n}) \dots (1)}$

Total travel distance L

2) Change monotonously $P_m = \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \dots (2)$ Pmin : Minimum load (N) Pmax : Maximum load (N) $P_{max} : Maximum load (N)$ $P_{max} = P_{max}$ P_{max} $P_$

Total travel distance L

9. Rating life calculation

Δ

A rating life needs to be calculated because life of a linear motion guide differs even under the same driving conditions. Rating life of a linear motion guide is a total travel distance that a linear motion guide system composed of a certain number of units can drive without flaking in 90% of the race way surface or rolling element after being run under the same working conditions. If a ball or a roller is used as a rolling element, it is possible to calculate a rating life in the following formula.

The formula to calculate the rating life of a ball-enabled linear motion guide

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{w}} \cdot \frac{C}{P_{c}}\right)^{3} X 50$$

L : Rating life	(km)
C : Basic dynamic load rat	ting (N)
Pc : Calculated load	(N)
fн : Hardness factor	See Figure 3
f T : Temperature factor	See Figure 4
fc : Contact factor	See Table 2
C 1 1 C 1	C T C

fw : Load factor See Table 3

The formula to calculate the rating life of a roller-enabled linear motion guide

$$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{w}} \cdot \frac{C}{P_{c}} \right)^{\frac{10}{3}} X \ 100$$

L : Rating life	(km)
C : Basic dynamic load ra	ating (N)
Pc : Calculated load	(N)
fн : Hardness factor	See Figure 3
f T : Temperature factor	See Figure 4
fc : Contact factor	See Table 2
fw : Load factor	See Table 3

▶ If the length of stroke and the number of reciprocating motions are constant, it is possible to calculate a life time with the use of the rating life (L) in the following formula:

$$L_{h} = \frac{L \times 10^{6}}{2 \times \ell_{s} \times n_{1} \times 60}$$

Lh	: Life	e tim	ie		(N)
			-		

 l_{s} : Length of stroke (mm)

n1 : No. of reciprocating motions (min⁻¹)

WAN

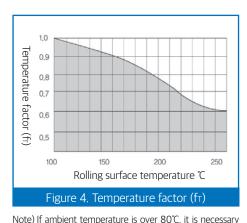
1) Hardness factor (fH)

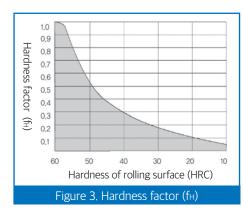
To implement the best performance of a lin ear motion guide, it is necessary to maintain appropriately the hardness and depth of the raceway surface of the block and rail that contact a rolling element (ball or roller).

WON linear motion guide has HRC58-64 surface hardness. There is no need to consid er hardness factor. If the hardness is lowered than a baseline, load capacity of a linear moti on guide decreases. In this case, it is necessar y to apply hardness factor to life calculation.

2) Temperature factor (f⊤)

If high temperature over 100°C is applied to a linear motion guide, it is necessary to take into account temperature factor (f_{T}) at the time when a liner motion guide is selected. Please make sure to use WON linear motion guide at below 80°C. At over 80°C, please use a high-temp linear motion guide.


> to use the materials of seal, end plate, and support plate that have specifications for high temperature.


3) Contact factor (fc)

If over two blocks are closely assembled and mounted, uniform load may not be applied to the blocks due to difference among mounting surfaces. Therefore, it is required to multiply basic static load rating (C) and basic dynamic load rating (Co) by the contact factor shown in Table 2.

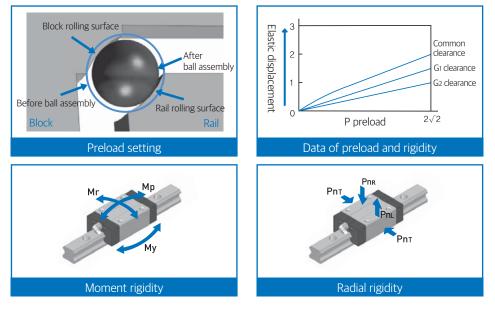
Table 2 .

No. of blocks in close contact	Contact factor (fc)
2	0.81
3	0.72
4	0.66
5	0.61
Over 6	0.6
Common use	1.0

4) Load factor (fw)

Generally the static load applied to the block of a linear motion guide can be calculated in formula. However, while a machine is running, the load applied to the block tends to come from vibration or impacts. Therefore, as for the vibration or impact load at high-speed running, it is necessary to consider the load factor (fw) shown in Table 3. Divide the basic dynamic load rating of a linear motion guide by a load factor (fw).

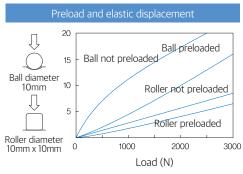
Table 3


Δ

External condition	Service Conditions	Load factor
Low	Smooth running at mild speed; no external vibration or impacts	1.0 ~ 1.3
Moderate	Low speed; moderate external vibration or impacts	1.2 ~ 1.5
High	High speed; strong vibration or impacts	1.5 ~ 2.0
Very high	Very high speed; strong vibration and impacts at running	2.0 ~ 4.0

4 Rigidity and Preload

1. Preload


A linear motion guide is preloaded in a way that it improves mechanical precision by eliminating clearance using the rolling element (ball or roller) inserted into the space between a rail and a block or in a way that it applies load to the rolling element in advance by inserting the rolling element larger than the clearance of the raceway between a rail and a block. This process will enhance the rigidity of the linear motion guide and will lessen the displacement level caused by external load.

WON

2. Radial clearance

Radial clearance refers to a total travel distance in a radial direction from the center of a block of a linear motion guide when mild load is applied to the block up and down from the center part of the rail length after the block is assembled in the rail which is then fixed to base. Radial clearance is usually classified into common clearance (no symbol), G1 clearance (light preload), G2 clearance (heavy load), and Gs clearance (special preload), which is selectable depending on usage. The values are standardized by form.

		Туре	Preload symbol	preload
		Moderate	No symbol	0 ~ 0.03 x C
	Н	Light	G1	0.04 ~ 0.08 x C
		Heavy	G2	0.09 ~ 0.13 x C
	S	Moderate	No symbol	0 ~ 0.03 x C
		Light	G1	0.03 ~ 0.05 x C
		Heavy	G2	0.06 ~ 0.08 x C
		Light	G1	Equivalent to 0.03C
	R	Heavy	G2	Equivalent to 0.08C
		Special	G3	Equivalent to 0.13C

 Table 4. Service conditions for radial clearance (preload)

Туре	Preload status	Symbol	Service conditions	Use
1. Moderate	Plus-minus clearance	No symbol (1)	 Load is applied in uniform direction and smooth running is needed There is almost no vibration or im pact and precise running is required. 	Welding machine, textile machinery, packaging machinery, various convey ors, medical equipment, woodworking machine, glass cutting machine, take- out robots, ATC, winding machine
2. Light	A small amount of minus clearance	G1 (2)	 There is a little vibration or impact, and moment load Light load is applied, yet high preci sion is required 	Various industrial robots, measuring equipment, inspection equipment, 3D processor, laser processor, PCB drilling machine, various assembling machines, electric spark machine, punching press
3. Heavy	A large amount of minus clearance	G2 (3)	• There are mild impact load, over- hang load and moment load. Rigid ity and high precision are required.	CNC lathe, machining center, milling machine, grinding machine, tapping center, drilling machine, hobbing ma chine, a variety of special equipment
4. Special	A small or large amount of minus clearance	Gs (4)	 Smaller clearance than that of G1 preload; light and precise operation is required. Larger preload than that of G2; impact load and complex load; high strength and high rigidity are needed. 	No preload, ultra-light preload, larg er-than-moderate preload, special preload customized to user condi tions, special processing machine for heavy-duty cutting

Note (1) No clearance or very small clearance.

- (2) Very small minus clearance
- (3) Quiet large minus clearance to enhance rigidity
- (4) Preload below G1 or over G2 to meet service conditions

Table 5. Radial clearance of H, S & HS Series

			Symbol				
Model No.		Moderate	Light preload	Heavy preload			
			No symbol		G2		
H15	S15	-	-4 ~+2	-12 ~ -4	-		
H20	S20	-	-5 ~ +2	-14 ~ -5	-23 ~ -14		
H25	S25	HS25	-6 ~+3	-16 ~ -6	-26 ~ -16		
H30	-	HS30	-7 ~ +4	-19 ~ -7	-31 ~ -19		
H35	-	HS35	-8 ~+4	-22 ~ -8	-35 ~ -22		
H45	-	-	-10 ~ +5	-25 ~ -10	-40 ~ -25		
H55	-	-	-12 ~ +5	-29 ~ -12	-46 ~ -29		

Table 6. Radial clearance of HW Series

Table 6. Radial clearance of HW Series Unit : µm				
	Symbol			
Model No.	Moderate	Light preload	Heavy preload	
	No symbol		G2	
HB17	-3 ~ 0	-7 ~ -3	-	
HB21	-4 ~+2	-8 ~ -4	-	
HB27	-5 ~ +2	-11 ~ -5	-	
HB35	-8 ~+4	-18 ~ -8	-28 ~ -18	

Table 7. Radial clearance of M & MB Series

		Symbol				
Model No.		Moderate	Light preload			
		No symbol	G1			
M5	MB5	0 ~ +1.5	-1 ~ 0			
M7	MB7	-2 ~ +2	-3 ~ 0			
M9	MB9	-2 ~ +2	-4 ~ 0			
M12	MB12	-3 ~ +3	-6 ~ 0			
M15	MBT13,MB15	-5 ~ +5	-10 ~ 0			
M20	-	-7 ~ +7	-14 ~ 0			

Table 8. Radial clearance of R Series

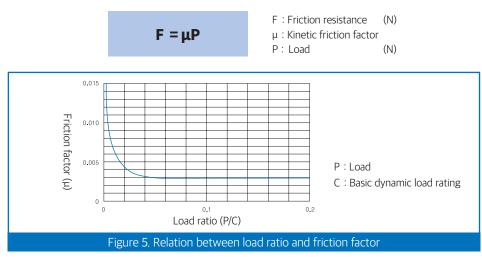
	Symbol					Symbol	
Model No.	Light preload		Special preload	Model No.			Special preload
			G3				G3
R25	-2 ~ -1	-3 ~ -2	-4 ~ -3	R45	-2 ~ -1	-3 ~ -2	-5 ~ -3
R30	-2 ~ -1	-3 ~ -2	-4 ~ -3	R55	-2 ~ -1	-4 ~ -2	-6 ~ -4
R35	-2 ~ -1	-3 ~ -2	-5 ~ -3	R65	-3 ~ -1	-5 ~ -3	-8 ~ -5

Unit : µm

Unit : µm

Unit : um

WON


5 Friction

1. Friction

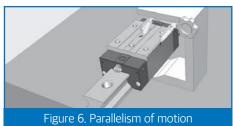
Friction of a linear motion guide resistance is about 1/20-1/40 of an existing sliding guide be cause a rolling element (ball or roller) is assembled in between a rail and a block which is the raceway surface. In addition, the device has low starting torque because the difference between static friction and kinetic friction is very small. low power loss and temperature rise in the part of linear motion are of advantage to speedy operation. high conformability and response make it possible to do high-precise positioning.

2. Friction coefficient

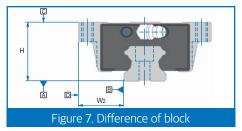
Friction of a linear motion guide resistance relies on the load applied to the linear motion guide, speed, lubrication or form. In the case of light load or speedy motion, lubricant or seal is the main cause of friction resistance. In the case of heavy load or slow motion, the magnitude of load affects friction resistance.

Common friction coefficients of various operating systems are shown below in the table, and are applied if there are appropriate lubricant or assembly and normal load.

Type of operating system	Major model number	Friction factor μ
Lippor Motion Cuido	H, HS, HB, S, SS, HS, HSS, M, MB	0.002 ~ 0.003
Linear Motion Guide	R, RS	0.001 ~ 0.002
Ball Spline	WLS, WSP	0.002 ~ 0.003
Super Ball Bushing / Linear Ball Bushing	SB, SBE, LM, LME	0.001 ~ 0.003
Cross Roller Guideway	WRG	0.001 ~ 0.0025


6 Precision

Δ


1. Precision specification

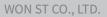
How to measure degree of a linear motion guide of travel is as follows (See Figure 6).

- a. Tighten the rail to the mounting surface of the bed with a bolt at the defined torque.
- b. Draw a measuring jig right up against the datum plane of the block as shown in the figure.
- c. Make a measurement by making the block and measuring jig travelled in the entire section from the starting point to the end point of the rail.
- d. The value measured in the above way is an error of parallelism of motion that the block has on the basis of the rail.

The degree of parallelization between the datum plane of the block and that of rail

Difference between the blocks installed in the plane

2. Precision design


Table 9. Dimensional tolerance and parallelism of motion

Dimension	Description
Dimensional tolerance of height H	Distance from the base side of rail A to the top side of block C
Difference in height H	Difference in the height of blocks combined from each rail on the same plane
Dimensional tolerance of width W ₂	Distance between the datum plane of rail B and the reference side of block D
Difference in width W2	Difference between the reference side of rail B of the block combined to the rail, and the reference side of block D
Parallelism of motion of C against A	Change in the top side of block C based on the base side of rail A during the motion of the block combined to the rail
Parallelism of motion of D against B	Change in the reference side of block D based on the reference side of rail B during the motion of block combined to the rail

3. Dimension tolerance and difference

Table 10. Precision specification of linear motion guide (H, H...S, HW, S, S...S, HS, HS...S series)

	Moderate	High	Precision	Super precision	Ultra precision		
Dimension	No symbol	Н		SP	UP		
	NO SYMDOI	P6	P5	P4	P3		
Dimensional tolerance of height H	±0.080	±0.042	±0.020	±0.010	±0.008		
Difference in height H	0.025	0.015	0.007	0.005	0.003		
Dimensional tolerance of width W ₂	±0.100	±0.050	±0.025	±0.015	±0.010		
Difference in width W ₂	0.030	0.030 0.020 0.010 0.007 0.003					
Parallelism of motion of C against A	See Table 11.						
Parallelism of motion of D against B	See Table 11.						

Linear Motion Guide

Length of rail Below P5 1.5 1.5 1.5 3.5 1.5 2.5 1.5 4.5 1.5 3.5 1.5 4.5 2.5 1.5 8.5 3.5 6.5 2.5 7.5 4.5 8.5 5.5 4.5 9.5 6.5 5.5 7.5

Table 11. Length of rail and parallelism of motion of linear motion guide (H, H...S, HB, S, S...S, HS, HS...S Series) $_{
m Unit\,:\, \mu m}$

Table 12. Precision specification of miniature linear motion guide (M, MB Series)

Unit : mm

Model	Precision spec	Moderate	High	Precision				
No.	Dimension	No symbol	P6	P5				
	Dimensional tolerance of height H	±0.030	-	±0.015				
	Difference in height H	0.015	-	0.005				
5	Dimensional tolerance of width W2	±0.030	-	±0.015				
5	Difference in width W2	0.015	-	0.005				
	Parallelism of motion of C against A	See Table 13.						
	Parallelism of motion of D against B	See Table 13.						
7	Dimensional tolerance of height H	±0.040	± 0.020	±0.010				
9	Difference in height H	0.030	0.015	0.007				
12	Dimensional tolerance of width W2	±0.040	± 0.025	±0.015				
13	Difference in width W2	0.030	0.010					
15	Parallelism of motion of C against A							
20	Parallelism of motion of D against B		See Table 13.					

/	l	l	
1			

Table 13. Length of rail and parallelism of motion of miniature linear motion guide (M, MB series) $Unit: \mu m$

Length	n of rail	Parall	elism of m	iotion	Length of rail		Parallelism of motion		
		Moderate	High	Precision			Moderate	High	Precision
Above	Below	No	Н	Р	Above	Below	No	Н	Р
		symbol	P6	P5			symbol	P6	P5
-	40	8	4	1	820	850	24	14	5
40	70	10	4	1	850	880	24	14	5
70	100	11	4	2	880	910	24	14	5
100	130	12	5	2	910	940	24	14	5
130	160	13	6	2	940	970	24	14	5
160	190	14	7	2	970	1000	25	14	5
190	220	15	7	3	1000	1030	25	16	5
220	250	16	8	3	1030	1060	25	16	5
250	280	17	8	3	1060	1090	25	16	6
280	310	17	9	3	1090	1120	25	16	6
310	340	18	9	3	1120	1150	25	16	6
340	370	18	10	3	1150	1180	25	17	6
370	400	19	10	3	1180	1210	26	17	6
400	430	20	11	4	1210	1240	26	17	6
430	460	20	12	4	1240	1270	26	17	6
460	490	21	12	4	1270	1300	26	17	6
490	520	21	12	4	1300	1330	26	17	6
520	550	22	12	4	1330	1360	27	17	6
550	580	22	13	4	1360	1390	27	18	6
580	610	22	13	4	1390	1420	27	18	6
610	640	22	13	4	1420	1450	27	18	7
640	670	23	13	4	1450	1480	27	18	7
670	700	23	13	5	1480	1510	27	18	7
700	730	23	14	5	1510	1540	28	19	7
730	760	23	14	5	1540	1570	28	19	7
760	790	23	14	5	1570	1800	28	19	7
790	820	23	14	5					

Super precision Dimensional tolerance of height H ±0.042 ±0.010 ±0.008 ±0.020 Difference in height H 0.015 0.007 0.005 0.003 Dimensional tolerance of width W2 ±0.050 ±0.025 ±0.015 ±0.010 Difference in width W2 0.020 0.010 0.007 0.003 Parallelism of motion of C against A See Table 15. Parallelism of motion of D against B See Table 15.

Table 14. Specifications for precision of linear motion guide (R series)

Table 15. Length of rail and parallelism of motion of linear motion guide (R series)

Unit : µm

Length	n of rail	Parallelism of motion					
About	Below	High	Precision	Super precision	Ultra precision		
Above	Below	P6	P5	P4	P3		
-	50	3	2	1 <u>.</u> 5	1		
50	80	3	2	1 <u>.</u> 5	1		
80	125	3	2	1 <u>.</u> 5	1		
125	200	3 <u>.</u> 5	2	1 <u>.</u> 5	1		
200	250	4	2 <u>.</u> 5	1 <u>.</u> 5	1		
250	315	4 <u>.</u> 5	3	1 <u>.</u> 5	1		
315	400	5	3 <u>.</u> 5	2	1.5		
400	500	6	4 <u>.</u> 5	2.5	1.5		
500	630	7	5	3	2		
630	800	8 <u>.</u> 5	6	3 <u>.</u> 5	2		
800	1000	9	6 <u>.</u> 5	4	2 <u>.</u> 5		
1000	1250	11	7 <u>.</u> 5	4 <u>.</u> 5	3		
1250	1600	12	8	5	4		
1600	2000	13	8 <u>.</u> 5	5 <u>.</u> 5	4 <u>.</u> 5		
2000	2500	14	9 <u>.</u> 5	6	5		
2500	3150	16	11	6 <u>.</u> 5	5 <u>.</u> 5		
3150	4000	17	12	7 <u>.</u> 5	6		

A

4. Selection of precision class

Table 16. For the selection of precision class of linear motion guide by unit, please refer to the table shown below.

				ecision cla		, 1	Preload		
Application	Unit	Preload type	High			Ultra precision	Preload type		Heavy preload
pplid	Unit	No	Н		SP	UP	No	G1	G2
<		symbol	P6	P5	P4	P3	symbol		02
	CNC Lathe		•	•	•				•
	Machining center		•	•	•				•
	NC milling machine			•	•				•
	CNC tapping machine		•	•	•				•
ne T	NC boring machine		•	•	•				•
Machine Tool	NC drilling machine		•	•	•				•
2	3D engraving machine		•	•	•				•
	Jig boring machine		٠	•	•				•
	EDM electric spark machine			•	•	•		•	•
	Grinding machine			•	•	•			•
	Prober equipment					•		•	•
¥	Wire bonder				•	•		•	•
pmer	Slicing machine				•	•		•	
Semiconductor equipment	Dicing machine				•	•			
ctor	IC test handler			•	•			•	
npuc	PCB laser via-hole driller				•			•	
emico	PCB inspection equipment			•	•			•	
Ň	Laser marker			•					
	Chip mounter			•	•			•	
	Mac/Mic inspection equipment				•	•		•	
	Phantom inspection equipment				•	•		•	
	Exposure				•	•			
	Laser repair			•	•	•		•	
Ц Ц Ц	Lighting inspection equipment		٠	•				•	
	Coater machine			•	•			•	
	Chip bonding machine		•	•				•	
	Dispenser machine		٠	•				•	

WON ST CO., LTD.

			Pr	ecision cla		Preload			
Application	Unit	Preload type	High		Super precision	Ultra precision	Preload type		Heavy preload
pplid	UTIL	No sym-	Н	Р	SP	UP	No	G1	G2
<		bol	P6	P5	P4	P3	symbol		02
	Scriber		•	•				•	
	Glass edge grinding machine		•					•	
<u> </u>	FPD measuring test equipment			•	•			•	
LL.	Laminating equipment		•	•				•	
	Indentation test equipment								
	Prober equipment								
	Punching press		•					•	
01	Tire molder	•						•	
chine	Tire vulcanizer	•						•	
Industrial machine	Auto-shearing machine	•						•	
stria	Auto-welding machine	•					•	•	
Indu	Conveyor	•					•		
	Textile machine	•							
	Injection molding machine	•					•	•	
	Cartesian coordinated robot	•	•	•					
	Gantry robot	•	•					•	
oot	LTR robot		•	•				•	
Industrial robot	Take-out robot	•						•	
ustria	Cylindrical coordinated robot		•					•	
Ind	Vacuum robot			•				•	
	Robot carriage	•							
	Linear actuator			•			•	•	
	Office machine	•					•		
	FA transport equipment	•					•		
	Medical equipment	•					•	•	
ers	Welding machine	•							
Others	Painting machine	•					•		
	Precision XY table		•		•			•	
	UVW stage		•	•				•	
	3D measuring machine							•	
	J								

7 Lubrication

1. Purpose

Δ

The purpose of lubricating a linear motion guide is to create an oil surface between the raceway surface of rail and block and a rolling element so as to avoid the direct contact of metals, and thereby to reduce friction, wear and heat, preventing the raceway surface and the rolling element from being overheated and melted to be adhered to each other. Moreover, the oil surface created between the raceway surface and a ball decreases load-induced contact stress, so that it can improve the rolling contact fatigue life and prevent rust. A linear motion guide is equipped with a seal. Nevertheless, grease inside the block oozes while the device is in operation. For this reason, it is required to supply a lubricant at a time and interval appropriate to each service condition.

2. Selection of lubricant

To achieve the best performance of a linear motion guide, it is necessary to select the lubricant suitable for service conditions. Lubricants used for a linear motion guide include grease and oil. It is possible to select an appropriate lubricant and lubrication method depending on service conditions, load, operating speed, assembly type, etc.

3. Grease lubrication

Grease is a semisolid lubricant that consists base oil, thickener, and additives.

Generally, when a linear motion guide is lubricated with grease, lithium soap grease is used. In the con dition of high load or the condition of use, the grease mixed with extreme-pressure additive is used. To apply a linear motion guide to a high-vacuum environment or a cleanroom, it of desirable to select a type of grease excellent at low evaporation and low dust generation.

1) Grease refilling

For grease refilling in a linear motion guide, it is necessary to supply a sufficient amount of grease with the use of a grease nipple until remaining grease is discharged. It is appropriate to fill up 50% or so volume block with grease. After refilling, rolling resistance can be increased. In order to reduce the rolling resistance, it is better to take a test run about 20 times prior to the operation.

2) Refill interval

If a travel of linear motion guide exceeds a certain time, its lubricating performance declines. So it is re quired to supply an appropriate amount of grease at a proper time depending on service conditions and environment. Usually, it is necessary to supply grease when travel of the device distance reaches 100km.

$$T = \frac{100 \times 6000}{Ve \times 60}$$
 hr

T : Oil refilling cycle (time) Ve : Velocity (m/min)

4. Oil lubrication

When a linear motion guide is lubricated with oil, it is recommended to use an oil lubricant with high viscosity (68mm² /sec) under the condition of high load, and an oil lubricant with low-viscosity (13mm² /sec) under the condition of high velocity. As for oil lubrication, the recommended oil supply amount per block is 0.3cm³ per hour.

Table 17. Inspection and	refilling time of lubricant
--------------------------	-----------------------------

Туре	Checkpoints	Inspection cycle	Refilling time
Grease	 Check if there is any cutting chip, dust, foreign substance Check if there is any contamination by other substances 	3-6 months	 Generally, supply grease 1-2 times every year. Usually, supply grease more than once every year if travel exceeds 100km/year. Refill depending on a situation after checking the status of grease.
Oil	Check a lubricant quantity, contamination, and foreign substance	3-6 months	 Refill depending on the results of inspection, and determine an optimal amount depending on volume of the oil tank
Oil	Check an oil level (Supply oil mist)	Before every operation	 Refill appropriately after checking how much oil is consumed. Define an optimal amount after how much oil is consumed

% Please DO NOT use any oil that affects synthetic resin, a material of linear motion guide parts.

Table 18. Lubricants used for linear motion guide

Application	Main use	Product name	Manufacturer	Manufacturer	Base oil	Type of thickener
Common use (extreme-pressure additive incl.)	Industrial machine, machine tool	BW EP NO.2	BWC	-20 ~+105	Mineral oil	Lithium
Common use	Machine tool, electric spark machine, industrial robot, etc.	GADUS S2 V220 00	SHELL	-30 ~+110	Mineral oil	Lithium
Clean & low dust generation	Semiconductor, FPD equipment	SNG 5050 DEMNUM	NTG DAIKIN	-40 ~+1200 -50 ~+300	Synthetic oil	Urea
Eco-friendly	Semiconductor AMOLED process equipment, driving gear in vacuum chamber	FOMBLIN Krytox High vacuum grease	AUSIMONT DuPont Dow Corning	-20 ~+250	Synthetic oil	Re-fluoride Ethylene fluorinated
Machine tool	Excellent dust prevention and strong oil film strength Hardly emulsified to clearance, so suitable for machine tools	VACTRA NO.2 SLC DTE Oil	ExxonMobil	-20 ~+100	Oil	Way oil Turbine oil
Special use	Corrosion proofing	6459 Grease	SHELL	-20 ~+100	Mineral oil	Polyurethane

8 Surface Treatment

1. Surface treatment

WON ST uses the following methods for the optimal surface treatment of a linear motion guide in order to prevent rust and improve the quality of its appearance.

2. Types of surface treatment

1) Electrolytic rust-preventive black coating (black Cr plating)

This is an industrial black chrome coating type that is used to improve the corrosion proof at low cost. It can achieve better corrosion proof than martensite stainless steel and be used to enhance appearance and prevent the reflection of light.

2) Industrial hard chrome plating

A hardness of surface is over 850HV, so that its wear proof is excellent and its corrosion proof is comparable with that of martensite stainless steel. WON ST offers such surface treatment types such as alkakine col oring and color alumite treatment at a customer request. To use a linear motion guide after its sur face treatment, it is necessary to set a high safety factor.

3) Fluoride low-temperature Cr plating

It is also called "Raydent." This is a combined surface treatment type of black Cr coating with special fluoride resin coating that is used in the places requiring high corrosion proof, or in cleanroom that needs to generate low dust.

9 Dust Proof

1. Dust proof

To make use of the characteristics and performance that a linear motion guide has, it is important to protect the device against external foreign substances which are causes of abnormal wear and its shortened life span. If any dust or foreign substance is expected to be mixed in, it is required to use an effective sealing or dust-proofing system.

2. Types of dust proof

WON Linear Motion Guide has basically a seal assembled. If necessary, it I possible to mount a metal scraper on the device before shipment.

1) Exclusive seal

In order to protect the inside of a bearing against foreign substances, an end seal and a side seal are installed on the both ends and bottom of a block, and an inner seal is mounted on the inside of the block.

2) Metal scraper

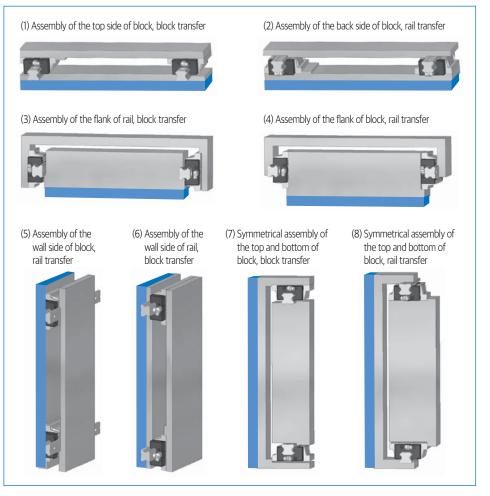
A metal scraper is installed outside an end seal, so that it is effective at protecting a device against foreign substances, such as hot spatter or slag generated in a welding process.

Δ

10 Measures for Use in Special Environments

WON Linear Motion Guide is useful in various special applications if being used appropriately in accord ance with such service conditions as material, surface treatment, dust proof, and grease.

Table 19.


Application	Conditions of use	Measures		
Clean	If used in a clean environment,	Lubricant	For a clean environmentUse the grease that generates low dust	
(Clean room) -Semiconductor, FPD, medical equipment-	it is required to minimize dust or particles generated in a linear motion guide, as most as possible.	Rust prevention	 Black Cr coating Fluoride low-temperature colorimet ric Cr plating (Raydent treatment) Use high-corrosion resistant stainless steel as a material 	
Vacuum	If used in a vacuum environment that needs to maintain vacuum status, it is required to	Lubricant	Use the grease for a vacuum en vironment.	
-Semiconductor, FPD deposition equipment -	 control the out gas discharged by a linear motion guide as most as possible. Excellent rust prevention is required, since rust-prone parts cannot be used in this environment. 	Rust prevention (Out Gas)	 Use high-corrosion resistant stainless steel as a material Use a self-oiling agent with special coatings like fluoroplastic coatin Use ceramic as a material 	
	 If used in a higher temperature environment than general one, 	Lubricant	 Use the grease for high- temperature. 	
High-temperature environment	where heat proof of a ma terial is important, it is re quired to use metals for plastic synthetic resin parts	Material	 Use an end seal, side seal+ double seal. Use a double seal. Use a special seal for high temperature 	
	 If used in an environment where there are a lot of cutting 	Seal	 Use a plastic synthetic resin cap Use a metal cap Use a metal scraper 	
Dust	chips, wood dust, and dust, it is required to take dust proof measures to protect the block	Cap	 Use a plastic synthetic resin cap. Use a metal cap Use a seal plate 	
	against foreign substances.		 Use an exclusive holding door Use an sealing and all-in-one holding door 	
	 If exposed to a spot welding or 	Spatter	Fluoride black Cr coating	
Spatter	arc welding environment, it is required to take measures to	Seal	Use a metal scraper	
	prevent hot spatters from being fixed onto a rail	Dust resistance	 Use a metal cap Use a seal plate 	

11 Placement and Installation

1. Placement and structure

To mount a linear motion guide on equipment, it is required to understand the overall structure of the equipment first, and then check the sizes of the base and a transfer table. To determine the optimal in stallation of a linear motion guide, it is necessary to take into account mounting directions such as placing vertically, in slope, or in the back, load, and the life span required.

Installation layout of linear motion guide (examples)

WA

2. Mounting and fixation

In the structure affected by both vibration and impact, in the place that has complex load or moment load, it is required to fix a linear motion guide in a different way from a general one.

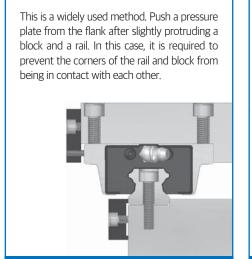
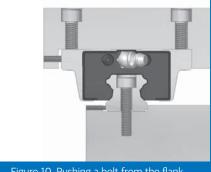
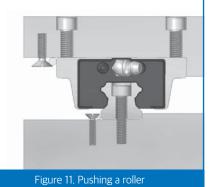


Figure 8. Pushing a pressure plate from the flank

You must be required to use miniature bolts due to the spatial constraint when a rail is pushed by a bolt. It is favorable to use as many bolts for pushing as possible.

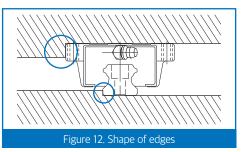


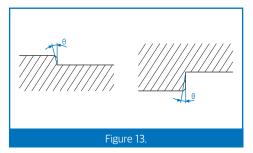

Figure 10. Pushing a bolt from the flank

This is a way of fastening a tapered fixture with a bolt. Even slightly bolting up generates big force in a horizontal direction. If it is bolted up too much, deformation may occur in rail, for instance, which needs to be taken a caution.

Figure 9. Pushing a tapered plate

This is a way of pushing a needle roller with the head of a countersunk screw. It is careful to push it to fit the screw.

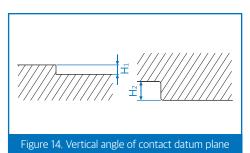

3. Design of the mounting surface for installation


Design and management of the mounting surface

The precision of mounting surface of a linear motion guide and an error in installation cause unexpected load and stress to the device, negatively influencing the travel and life of the device. So, it is required to take caution to prevent the harmful effects.

Management of the vertical angle of the datum plane for installation

If the vertical angle of the installation surface of a rail or block and of its datum plane is inaccurate, it might not be assembled precisely. So, it is required to review an error of vertical angel in design.



Management of the datum plane for assembly

In designing a linear motion guide, it is important to manage the height and thickness of its assembly datum plane. If the height is too high or low, a rail or a block may fail to be assembled precisely due to its surface attachment; the application of eccentric load, horizontal load and moment load may loosen the strength of joint and cause poor assembly. In this case, precision fails to meet the requirements in de sign. So, attention must be paid.

Management of the shape of contact corner

If the right-angled corner of a rail or block installed to the mounting surface of a linear motion guide is processed in R-shape and R value is bigger than the dimension of the surface of the rail or block, it is possible to cause a failure of precise assembly to the datum plane. So, attention must be paid.

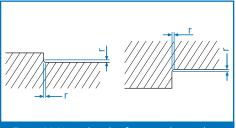


Figure 14. Vertical angle of contact datum plane

I Init : mm

Wз

Management of the dimensional tolerance between datum plane and bolt in design

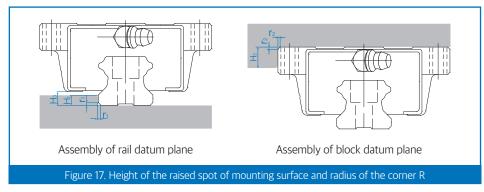

If the dimensional tolerance between the contact datum plane of a rail or block of a linear motion guide and a mounting hole is too big, precise assembly fails. So, attention must be paid. Generally the dimensional tolerance is ±0,1mm as a reference value, If the dis tance tolerance between the assembly datum plane of rail or block and the assembly bolt hole is too wide or narrow, precise assembly may fail, So, it is required to set the tolerance to W3±0.1mm in design.

Figure 16. Dimensional tolerance between contact datum plane and mounting hole

- Make a datum plane that can contact the flank in order to secure the assembly convenience or precise position and the assembly surface of a rail or block in the installation process of a linear motion guide.
- The height of the raised spot of contact datum plane or the radius of corner depend on the specifications of a linear motion guide. So please see the table shown below.
- To prevent the raised spot from being deformed by the pressing force from above or pushing force from side, secure sufficient thickness in design.

					Unit : min
Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H ₂	H₃
15	0.5	0.5	3	4	4.7
20	0.5	0.5	3.5	5	6
25	1	1	5	5	7
30	1	1	5	5	7.5
35	1	1	6	6	9
45	1	1	8	8	10
55	1.5	1.5	10	10	13

H, H...S, HB, S, S...S, HS, HS...S Series

HB Series

A

Unit : mm

Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)		Height of raised spot of the installation to block H2	H₃
17	0.4	0.4	2	4	2.5
21	0.4	0.4	2.5	5	3.3
27	0.4	0.4	2.5	5	3.5
35	0.8	0.8	3.5	5	4

S, S...S Series

Unit : mm

Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)		Height of raised spot of the installation to block H ₂	H₃
15	0.5	0.1	2.5	4	4.5
20	0.5	1	4	5	6
25	1	1	5	5	7

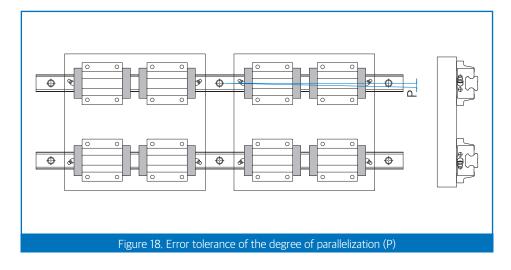
M. MB Series

M, MB Se	M, MB Series Unit : mm				
Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H ₂	H₃
5	0.2	0.2	0.8	2	1
7	0.2	0.2	1.2	2.5	1.5
9	0.2	0.2	1.5	3	2
12	0.2	0.2	2.5	4	3
13	0.2	0.2		4.5	4
15	0.2	0.2	3	4.5	4
20	0.2	0.2	4	5	5

R Series

Unit : mm

					0110 11111
Model No.	Radius of corner of the installation to rail r1(max.)	Radius of corner of the installation to block r2(max.)	Height of raised spot of the installation to rail H1	Height of raised spot of the installation to block H ₂	H₃
25	1	1	4	5	6.5
30	1	1	4.5	5	7
35	1	1	5	6	7
45	1.5	1.5	6	8	9.5
55	1.5	1.5	8	10	10
65	1.5	2	9	10	13


4. Error tolerance of the mounting surface for installation

1) Auto-adjusting and error-absorbing abilities

A linear motion guide has an excellent auto-adjusting ability. Therefore, even though the structure with rail assembly is slightly deformed processing error may occur a little, the straightness or parallelism of a table after assembly is better than the precision in processing before assembly, and quite linear running is available.

2) Error tolerance of the degree of parallelization when using 2-axis assembly (P1)

The error tolerance of the degree of parallelization when a 2-axis assembly is used is shown below

H, H...S, HS, HS...S Series

H, HS, H	HS, HSS Series		Unit : µm
Model No.	Common clearance	G1 clearance	G2 clearance
15	25	18	-
20	25	20	18
25	30	22	20
30	40	30	27
35	50	35	30
45	60	40	35
55	70	50	45

HB Series

A

Unit · um

			onie - pini
Model No.	Common clearance	G1 clearance	G2 clearance
17	20	15	-
21	25	18	-
27	25	20	-
35	30	22	20

S. S...S Series

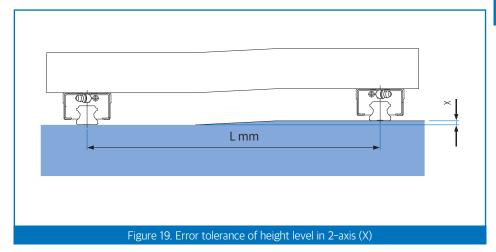
S, SS Series Unit : µr				
Model No.	Common clearance	G1 clearance	G2 clearance	
15	25	18	-	
20	25	20	18	
25	30	22	20	

M, MB Series

Model No. Common clearance Gi clearance 5 2 - 7 3 -
5 2 - 7 -
7 3 -
/
9 4 3
12 9 5
13 10 6
15 10 6
20 13 8

R Series

Unit : µm



Unit : um

3) Error tolerance of height in 2-axis assembly (P₂)

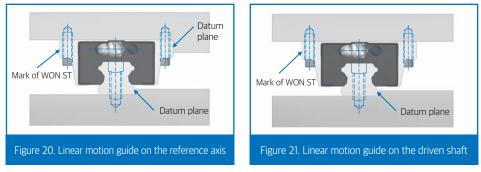
If an error of height in installation is too big, block distortion occurs and its rigidity may be weakened due to block distortion and changes in the raceway groove of the block and rail block and in the contact angle of a ball or roller as a rolling element.

The error tolerance of height level (x) when a 2-axis linear motion guide is used is as follows.

H, H...S, S, S...S, HS, HS...S Series

			ΟΠΙΣ : μΠ
Model No.	Common clearance	Gi clearance	G2 clearance
15	0.26L	0.17L	-
20	0.26L	0.17L	0.10L
25	0.26L	0.17L	0.14L
30	0.34L	0.22L	0.18L
35	0.42L	0.30L	0.24L
45	0.50L	0.34L	0.28L
55	0.60L	0.42L	0.34L

HB Series	5		Unit : µm
Model No.	Common clearance	G1 clearance	G2 clearance
17	0.13L	0.04L	-
21	0.26L	0.17L	-
27	0.26L	0.17L	-
35	0.26L	0.17L	0.14L

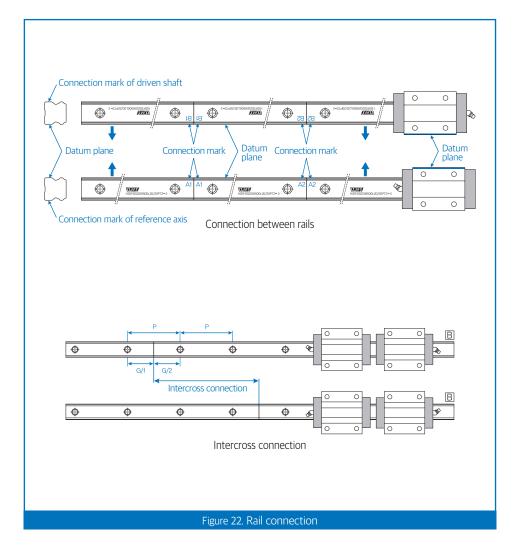

M, MB Series

Model No.	Common clearance	G1 clearance
5	0.04L	-
7	0.05L	-
9	0.07L	0.01L
12	0.10L	0.02L
13	0.12L	0.04L
15	0.12L	0.04L
20	0.14L	0.06L

R Series		Unit : µm
Model No.	G2 clearance	G₃ clearance
25, 30, 35, 45, 55, 65	0.17L	0.12L

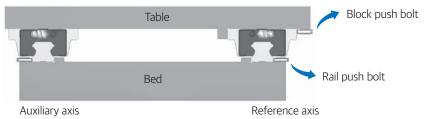
5. Description of the datum plane for installation

The datum plane of WON ST Linear Motion Guide is the ground surface on the opposite side of WON mark shown in the block.



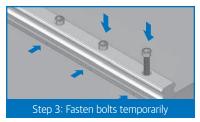
Unit : µm

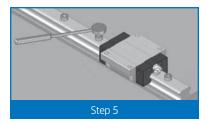
6. Rail connection

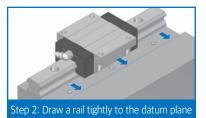

If it is necessary to use a longer rail than the one supplied, it is possible to connect rails for the purpose of use. The mark on the rail indicates the point where rails should be linked. If a block passes through the connecting points simultaneously, that may affect travel of the unit or cause a delicate hitch. To solve this problem, it is recommended to make the connecting points intercrossed.

7. Installation

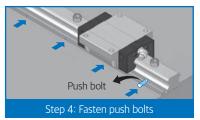
Δ


1) Installation of linear motion guide in the equipment exposed to vibration and impacts


1 Install a rail



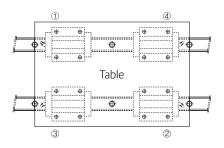
Prior to installation, remove burr, dust, and dust prevention oil completely.



Check the status of bolts and fasten every bolt temporarily.

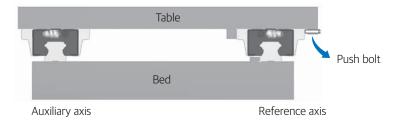
Gently place a linear motion guide on the bed, and push it in the opposite direction of datum plan of the bed.

Fix push bolts to make sure that the rail is in parallel with the datum plane of the bed.


- Step 5: Fasten all bolts with a torque wrench.
 Fasten all bolts at the recommended torque. Fasten the bolt in the center first and then continue fastening each bolt toward both ends in order to maintain preci sion of the rail in the assembly process.
- Step 6: Assemble an auxiliary axis.

Repeat the above procedure for the instal lation of an auxiliary axis.

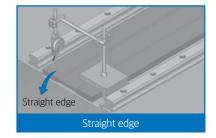
② Install a block

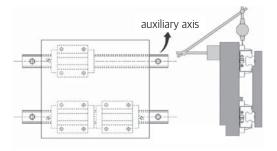

• Step 1: Assembly bolts temporarily Place a table on the block and fasten all bolts temporarily.

• Step 2: Fasten bolts tightly

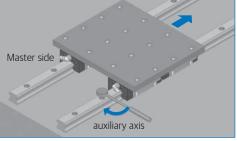
Fix the main rail block to the opposite side of datum plane of the table with the use of a push bolt, and adjust position of the table.

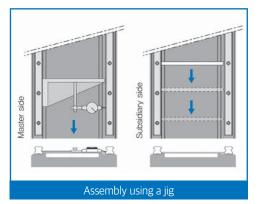
• Step 3: Fix and fasten assembly bolts Completely fasten all bolts on the datum plane and subsidiary side in the order of ① to ④.


2) Installation of linear motion guide without a push bolt


1 Install a master rail

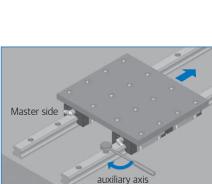
Fasten bolts temporarily and push a master rail toward the datum plane using a C-vise. Fasten the bolts sequentially at the pre scribed torque. Install an auxiliary rail

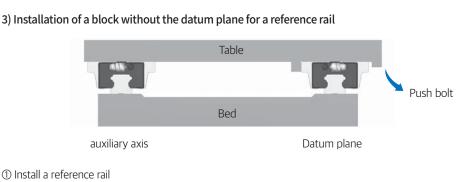


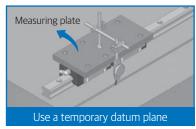

Place a straight edge in between two rails, and make it in parallel with the master rail fixed temporarily. Check the degree of par allelism with a dial gauge, and adjust the rail if needed. And then, fasten bolts in order

Assembly using a table

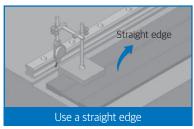
- 1. Fix two blocks on the datum plane and one block on the auxiliary axis to a table.
- 2. Fix another auxiliary block and rail to the ta ble and bed temporarily.
- 3. Place a dial gauge on the table and make sure that a prober of the gauge contacts the auxiliary axis of the block.
- 4. Separate the table from the end of the rail, and check parallelization between the block and the auxiliary rail.
- 5. Fasten bolts in order.
- Assembly using a rail on the reference axis
- 1. Fix two blocks on the datum plane and one block on the auxiliary axis to a table.
- 2. Fix another auxiliary block and rail to the ta ble and bed temporarily.
- 3. Separate the table from one rail and make adjustment in the way of parallelization with the auxiliary rail in consideration of rolling resistance in movement.
- 4. Fasten bolts in order.



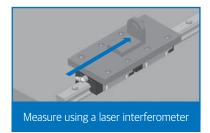

Move the postiion of a block sequentially at the end of the master rail every bolt pitch, and adjust parallelization between the datum plane of the master rail and the master plane of the auxiliary rail with the use of a special jig. Fasten bolts in order.

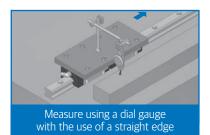


Completion of the installation



Fix two blocks together onto the meas uring plate and install a temporary datum plane near the rail mounting on the bed. Check the degree of parallelism of the rail, and fasten bolts in order.




Fix a rail to the bed temporarily. Adjust it to be in straight life with the use of a dial gauge. Fasten bolts in order.

② Apply the same method when installing an auxiliary block and rail.

4) Measure precision after installation

It is possible to check the precision of travel by fixing two blocks onto the measuring plate. To meas ure precision, either use a straight edge and check a measurement with a dial gauge, or use a laser interferometer.

8. Torque used for fastening bolts in assembly

1) Select the optimal torque for bolts

To assemble a rail of a linear motion guide, it is required to apply bolt torque appropriately in consider ation of the material of the mounting surface or bolts. Inaccurate bolt torque may affect the mounting precision of the rail. So please use a torque wrench.

2) Recommended torque by the material of the mounting base Unit : N · r												
Bolt specification		Torque value (Unit : N·m)										
DOIL SPECIFICATION	Steel	Casting	Aluminum									
M3	2	1.3	1									
M4	4	2.7	2									
M5	8.8	5.9	4.4									
M6	13.7	9.2	6.8									
M8	30	20	15									
M10	68	45	33									
M12	120	78	58									
M14	157	105	78									
M16	196	131	98									
M20	382	255	191									

9. Bolt fastening direction by linear motion guide type

	H-FN, H-FL, HB-F, H-FNS, H-FLS
	Since the flange of a block is tap-processed and the counter bore is processed in the bottom, it is possible to tighten bolts in the up and down direction as indicated by the arrows. But, to fasten bolts from bottom to top, it is recommended to use one size smaller.
	H-RN, H-RL, HB-R, H-RNS, H-RLS
3	Since the square body of the block is tap-processed, it is used at the time when bolts need to be fastened from top to bottom as indicated by the arrow
	S-RC, S-RN, S-RCS, S-RNS
-	Since the square body of the block is tap-processed, it is used at the time when bolts need to be fastened from top to bottom as indicated by the arrow
	S-FC, S-FN, S-FCS, S-FNS
	S-FC, S-FN, S-FCS, S-FNS Since the flange of a block is tap-processed and the counter bore is processed in the bottom, it is possible to tighten bolts in the up and down direction as indicated by the arrows. But, to fasten bolts from bottom to top, it is recommended to use one size smaller.
	Since the flange of a block is tap-processed and the counter bore is processed in the bottom, it is possible to tighten bolts in the up and down direction as indicated by the arrows. But, to fasten bolts from bottom to top, it is recommended to
	Since the flange of a block is tap-processed and the counter bore is processed in the bottom, it is possible to tighten bolts in the up and down direction as indicated by the arrows. But, to fasten bolts from bottom to top, it is recommended to use one size smaller.
	Since the flange of a block is tap-processed and the counter bore is processed in the bottom, it is possible to tighten bolts in the up and down direction as indicated by the arrows. But, to fasten bolts from bottom to top, it is recommended to use one size smaller. R-FN, R-FL Since the flange of a block is tap-processed and the counter bore is processed in the bottom, it is possible to tighten bolts in the up and down direction as indicated by the arrows. But, to fasten bolts from bottom to top, it is recommended to

12 Types of Linear Motion Guide

1. Linear Motion Guide H Series

1) Structure of H Series

Д

WON Linear Motion Guide H Series has a four-row circular arc-groove structure in the raceway groove of a rail or block. In addition, it has a 4-direction equal load type in which it can bear equal load rating for vertical compression load, tensile load, and horizontal load as its ball as a rolling element is combined at 45 degree. Therefore, the model reduces friction resistance and ensures smooth motion and long life. By imposing preload on the balls, it is possible to enhance the rigidity of a linear motion guide and to minimize its deformation for external load.

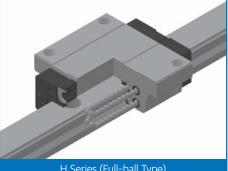
2) Features of H Series

- a. High quality, high precision, and elimination of labor.
- b. High rigidity and high precision for implementing stable travel precision for a long time.
- c. Excellent wear resistance and friction resistance that ensure a long life.
- d. The face-to-face duplex structure just like the D/F combination of ball bearing, excellent at auto-adjusting and error-absorbing.
- e. Various specifications for easy design.
- f. Easy to use due to high compatibility of rail and block.

2. Spacer Chain Linear Motion Guide H...SSeries

1) Structure of H...S Series

Like H Series, Linear Motion Guide H...S Series has the 4-direction equal load type and auto-adjusting face-to-face D/F structure. It uses a ball as a rolling element and has a spacer between balls to prevent them from colliding each other in rolling motion. Since it makes less noise and more stable circulating motion than a full-ball type, it is possible to implement quiet running at high speed. In addition, the spacer can serve as a pocket of a lubricant.

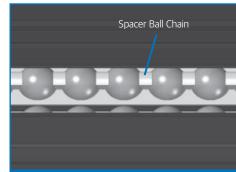

2) Features of H...S Series

- a. As a spacer-incorporated type that improves frictional properties and prevents the collision of balls, the model not only allows stable circulating motion and smooth running but also reduces noise. By attach ing a special lubricating seal for a longer life span, it is possible to be free of maintenance.
- b. Since a resin spacer is applied to the model, it is possible to prevent the collision of balls and the loss of oil film, and to generate less particles and dust.
- c. High quality, high precision, and elimination of labor.
- d. High rigidity and high precision for implementing stable travel precision for a long time.
- e. Excellent wear resistance and friction resistance that ensure a long life.
- f. The face-to-face duplex structure just like the D/F combination of ball bearing, excellent at auto-adjusting and error-absorbing.
- g. Various specifications for easy design.
- h. Easy to use due to high compatibility of rail and block.

Linear Motion Guide

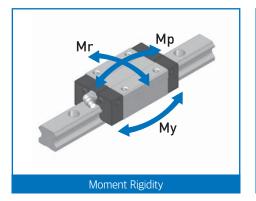
WON

Linear Motion Guide H Series, H...S Series

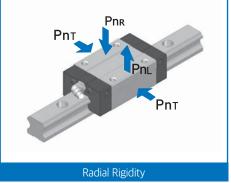

H Series (Full-ball Type)

ŧ

ŧ


45°

45°



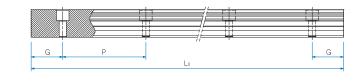
H...S Series (Spacer Chain Type)

Details of Spacer of H...S Series

Cross Section

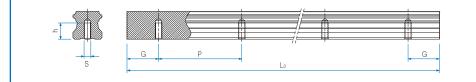
Types and Features

A


Category	Туре	Shape & Feature	
Flange	H-F H-FS	 A general type with the tap-ma chined flange of a block, support ing installation from bottom to top and from top to bottom 4-direction equal load type with high rigidity and high load S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	Machine tool X, Y, & Z axes, CNC machining center, CNC lathe, CNC tapping
type	H-FL H-FLS	 The same cross section as in H-F Series; increased load rating by en larging the entire length (L1) of a block 4-direction equal load type with high rigidity and high load S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	center, Electric injection machine, 3D engraving machine, Laser processer, Milling machine, Welder for exclusive use,
Compact	H-R H-RS	 A compact type with the tap-ma chined top of a block, minimizing the width (W) of a block 4-direction equal load type with high rigidity and high load S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	EDM electric spark machine, Automation device, Multi-transport system, FPD inspection equipment, Industrial robot, Precision X-Y
type	H-RL H-RLS	 The same cross section as in H-R Series; increased load rating by enlarging the entire length (L1) of a block 4-direction equal load type with high rigidity and high load S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	table, Various industrial machines

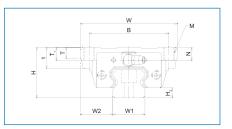
WON ST CO., LTD.

WON

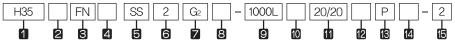

Unit : mm

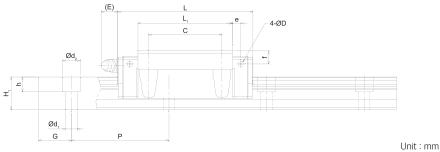
Standard and maximum lengths of a rail

Model No.	H15	H20	H25	H30	H35	H45	H55
	160	160	220	280	440	570	780
	220	220	280	360	520	675	900
	280	280	340	440	600	780	100
	:	340	400	520	680	885	:
Standard	1360	:	460	600	760	:	2820
length	1480	1960	:	:	:	2880	2940
	1600	2080	2200	2520	2680	2985	3060
		2200	2320	2680	2840	3090	
			2440	2840	3000		
				3000			
Standard pitch P	60	60	60	80	80	105	120
G	20	20	20	20	20	22.5	30
Max. length				4000			

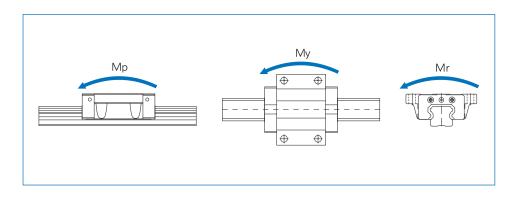

Standard tap hole type of a rail

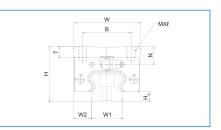
Model No.	S	h(mm)
H15	M5	8
H20	M6	10
H25	M6	12
H30	M8	15
H35	M8	17
H45	M12	24
H55	M14	24


H-FN Series, H-FL Series

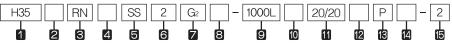

Model		Externa mensio		Dimensions of block													
No.	Height H	Width W	Length L		С	М	Lı			T1					D	Grease nipple	Нз
H 15FN	24	47	56.5	38	30	M5	40.8	-	7	11	6	4.7	3.7	3.25	3.3	A-M5	4.5
H 15FL	24	47	64.8	38	30	M5	49.1	-	7	11	6	4.7	3.7	3.25	3.3	A-M5	4.5
H 20FN	30	63	73.2	53	40	M6	53.1	-	9.2	10	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H 20FL	30	63	89.1	53	40	M6	69	-	9.2	10	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H 25FN	36	70	83.2	57	45	M8	58.3	-	11.5	16	9	10.2	8	5	3.3	B-M6F	7.0
H 25FL	36	70	103.1	57	45	M8	78.2	-	11.5	16	9	10.2	8	5	3.3	B-M6F	7.0
H 30FN	42	90	99.3	72	52	M10	70.8	-	9.5	18	7.3	9.8	5	5.8	5.2	B-M6F	7.5
H 30FL	42	90	121.5	72	52	M10	93	-	9.5	18	7.3	9.8	5	5.8	5.2	B-M6F	7.5
H 35FN	48	100	111.8	82	62	M10	80.8	-	12.5	21	8	9.7	6.5	6.5	5.2	B-M6F	9.0
H 35FL	48	100	137.2	82	62	M10	106.2	-	12.5	21	8	9.7	6.5	6.5	5.2	B-M6F	9.0
H 45FN	60	120	139.0	100	80	M12	101.9	25	13	15	10	16	8	8	3.3	B-PT1/8	10.0
H 45FL	60	120	170.8	100	80	M12	133.7	25	13	15	10	16	8	8	3.3	B-PT1/8	10.0
H 55FN	70	140	163.0	116	95	M14	117.5	29	19	17	11	16	8	9	3.3	B-PT1/8	13.0
H 55FL	70	140	201.1	116	95	M14	155.6	29	19	17	11	16	8	9	3.3	B-PT1/8	13.0

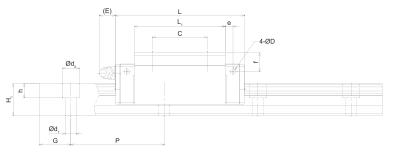
Composition of Model Name & Number


- 1 Model No. of Linear Motion Guide
- 2 Material of block : No symbol-Standard material / M-Stainless
- Type of block : RN-Rectangular standard type / RL-Rectangular long type/ FN-Flange standard type / FL-Flange long type
 No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ-End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal / XLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal / XLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Side seal+Inner seal+KE seal+Side seal+Inner seal+KE seal scraper+LF seal / KKLF-Double seal+Side seal+Side seal+Side seal+KE s
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
 No symbol-Standard rail / E-special rail specification (*1)
- Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 49.
 (*4) See Selection of Precision Class at page 20.


		Dime	nsion	s of rai	l	Basic loa	ad rating	Stat	ic allow	ance mo	oment kN	l∙m	Mass	
Width		Height		Pitch		С	Со	Ν	lp	Ν	ly	Mr	Block	Rail
W1 ±0.05	W2	Hī			d1 x d2 x h	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	13	20	60	4.5x7.5x5.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.19	1.3
15	16	13	20	60	4.5x7.5x5.3	14.3	19.3	0.165	0.769	0.165	0.769	0.154	0.24	1.3
20	21.5	16.5	20	60	6x9.5x8.5	18.3	23.9	0.221	1.049	0.221	1.049	0.251	0.41	2.2
20	21.5	16.5	20	60	6x9.5x8.5	21.8	30.7	0.370	1.692	0.370	1.692	0.322	0.54	2.2
23	23.5	20	20	60	7x11x9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.61	3.0
23	23.5	20	20	60	7x11x9	32.8	43.6	0.596	2.760	0.596	2.760	0.525	0.82	3.0
28	31	26	20	80	9x14x12	50.4	57.1	0.711	3.384	0.711	3.384	0.828	1.1	4.85
28	31	26	20	80	9x14x12	60.3	73.6	1.203	5.506	1.203	5.506	1.067	1.3	4.85
34	33	29	20	80	9x14x12	67.0	74.6	1.062	5.012	1.062	5.012	1.298	1.6	6.58
34	33	29	20	80	9x14x12	80.2	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	37.5	38	22.5	105	14x20x17	108.5	116.4	2.860	9.912	2.860	9.912	2.275	2.83	11.03
45	37.5	38	22.5	105	14x20x17	129.7	150.1	4.533	16.161	4.533	16.161	2.935	3.70	11.03
53	43.5	44	30	120	16x23x20	155.9	161.5	4.654	16.016	4.654	16.016	3.779	4.36	15.26
53	43.5	44	30	120	16x23x20	187.5	210.1	7.468	26.493	7.468	26.493	4.916	5.76	15.26

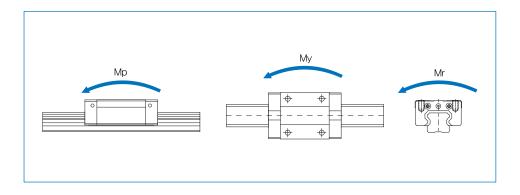
1N≒0.102kgf


H-RN Series, H-RL Series


Model	Exter	rnal di sions	men-				l	Dimen	sions of	block					
No.	Height H	Width W	Length L		С	M×l	Lı						D	Grease nipple	Нз
H15RN	28	34	56.5	26	26	M4 x 5	40.8	6	10	4.7	7.7	3.25	3.3	A-M5	4.5
H15RL	28	34	64.8	26	26	M4 x 5	49.1	6	10	4.7	7.7	3.25	3.3	A-M5	4.5
H20RN	30	44	73.2	32	36	M5 x 6	53.1	8	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H20RL	30	44	89.1	32	50	M5 x 6	69	8	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H25RN	40	48	83.2	35	35	M6 x 8	58.3	8	13	10.2	12	5	3.3	B-M6F	7.0
H25RL	40	48	103.1	35	50	M6 x 8	78.2	8	13	10.2	12	5	3.3	B-M6F	7.0
H30RN	45	60	99.3	40	40	M8 x 10	70.8	8	10.3	9.8	8	5.8	5.2	B-M6F	7.5
H30RL	45	60	121.5	40	60	M8 x 10	93	8	10.3	9.8	8	5.8	5.2	B-M6F	7.5
H35RN	55	70	111.8	50	50	M8 x 12	80.8	10	15	9.7	13.5	6.5	5.2	B-M6F	9.0
H35RL	55	70	137.2	50	72	M8 x 12	106.2	10	15	9.7	13.5	6.5	5.2	B-M6F	9.0
H45RN	70	86	139.0	60	60	M10 x 17	101.9	15	20	16	18	8	3.3	B-PT1/8	10.0
H45RL	70	86	170.8	60	80	M10 x 17	133.7	15	20	16	18	8	3.3	B-PT1/8	10.0
H55RN	80	100	163.0	75	75	M12 x 18	117.5	18	21	16	18	9	3.3	B-PT1/8	13.0
H55RL	80	100	201.1	75	95	M12 x 18	155.6	18	21	16	18	9	3.3	B-PT1/8	13.0

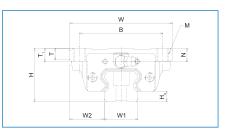
Composition of Model Name & Number

- 1 Model No. of Linear Motion Guide
- Material of block : No symbol-Standard material / M-Stainless
- Type of block : RN-Rectangular standard type / RL-Rectangular long type/ FN-Flange standard type / FL-Flange long type
 No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ-End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / ZZLF-End seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / ZZLF-End seal+Side se
- O Number of blocks assembled in one shaft
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- B Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- 2 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
 No symbol-Standard rail / E-special rail specification
- No symbol–Standard rail / E–special rail specification
- Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 49.
 (*4) See Selection of Precision Class at page 20.

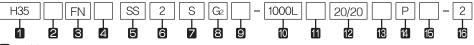


Unit : mm

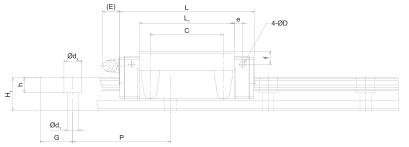
		Dime	nsions	s of rai	l		load ing	Stat	ic allow		Mass			
Width		Height		Pitch		С	Со	M	lp	Ν	ly	Mr	Block	Rail
W1 ±0.05	W2	H1			d1 x d2 x h	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	13	20	60	4.5x7.5x5.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.18	1.3
15	9.5	13	20	60	4.5xx7.5x5.3	14.3	19.3	0.165	0.769	0.165	0.769	0.154	0.23	1.3
20	12	16.5	20	60	6x9.5x8.5	18.3	23.9	0.221	1.049	0.221	1.049	0.251	0.31	2.2
20	12	16.5	20	60	6x9.5x8.5	21.8	30.7	0.370	1.692	0.370	1.692	0.322	0.41	2.2
23	12.5	20	20	60	7x11x9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
23	12.5	20	20	60	7x11x9	32.8	43.6	0.596	2.760	0.596	2.760	0.525	0.71	3.0
28	16	26	20	80	9x14x12	50.4	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85
28	16	26	20	80	9x14x12	60.3	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.85
34	18	29	20	80	9x14x12	67.0	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6.58
34	18	29	20	80	9x14x12	80.2	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58
45	20.5	38	22.5	105	14x20x17	108.5	116.4	2.860	9.912	2.860	9.912	2.275	2.89	11.03
45	20.5	38	22.5	105	14x20x17	129.7	150.1	4.533	16.161	4.533	16.161	2.935	3.74	11.03
53	23.5	44	30	120	16x23x20	155.9	161.5	4.654	16.016	4.654	16.016	3.779	4.28	15.26
53	23.5	44	30	120	16x23x20	187.5	210.1	7.468	26.493	7.468	26.493	4.916	5.59	15.26


1N≒0.102kgf

Δ

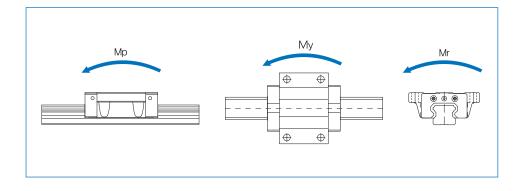

H-FN...S Series, H-FL...S Series

	Extern	al dime	nsions					Din	nensi	ons of	block					
Model No.	Height H	Width W	Length L		С	М	Lı		T1					D	Grease nipple	Нз
H15FNS	24	47	56.5	38	30	M5	40.7	7	11	6.0	4.7	3.7	3.25	3.3	A-M5	4.5
H15FLS	24	47	64.8	38	30	M5	49.1	7	11	6.0	4.7	3.7	3.25	3.3	A-M5	4.5
H20FNS	30	63	73.2	53	40	M6	53.1	9.2	10	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H20FLS	30	63	89.1	53	40	M6	69.0	9.2	10	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H25FNS	36	70	83.2	57	45	M8	58.3	11.5	16	9.0	10.2	8	5	3.3	B-M6F	7.0
H25FLS	36	70	103.1	57	45	M8	78.2	11.5	16	9.0	10.2	8	5	3.3	B-M6F	7.0
H30FNS	42	90	99.3	72	52	M10	70.8	9.5	18	7.3	9.8	5	5.8	5.2	B-M6F	7.5
H30FLS	42	90	121.5	72	52	M10	93.0	9.5	18	7.3	9.8	5	5.8	5.2	B-M6F	7.5
H35FNS	48	100	111.8	82	62	M10	80.8	12.5	21	8.0	9.7	6.5	6.5	5.2	B-M6F	9.0
H35FLS	48	100	137.2	82	62	M10	106.2	12.5	21	8.0	9.7	6.5	6.5	5.2	B-M6F	9.0


Composition of Model Name & Number

- 1 Model No.
- 2 Material of block : No symbol-Standard material / M-Stainless
- 3 Type of block : RN-Rectangular standard type / RL-Rectangular long type / FN-Flange standard type / FL-Flange long type
- 4 No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ-End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)
- 6 Number of blocks assembled in one shaft
- S-Spacer chain type
- 3 Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- 2 Size of G value: standard G value has no symbol
- 13 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- 🛿 Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- **I** No symbol–Standard rail / E–special rail specification
- 16 Number of axes used in the same plane

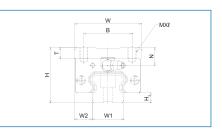
(*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 49.
 (*4) See Selection of Precision Class at page 20.



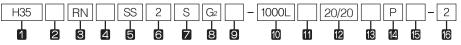
Unit : mm

Linear Motion Guide

		Dime	nsion	s of rai	l	Basic loa	ad rating	Stat	ic allowa	ance mo	ment kN	l∙m	Mass	
Width		Height		Pitch		С	Co	Ν	lp	M	ly	Mr	Block	Rail
W1 ±0.05	W2	H1	G		d1xd2xh	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	13	20	60	4.5×7.5×5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.19	1.3
15	16	13	20	60	4.5×7.5×5.3	13.7	19.3	0.165	0.769	0.165	0.769	0.154	0.24	1.3
20	21.5	16.5	20	60	6×9.5×8.5	17.6	23.9	0.221	1.049	0.221	1.049	0.251	0.41	2.2
20	21.5	16.5	20	60	6×9.5×8.5	21.1	30.7	0.370	1.692	0.370	1.692	0.322	0.54	2.2
23	23.5	20	20	60	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.61	3.0
23	23.5	20	20	60	7x11x9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.82	3.0
28	31	26	20	80	9x14x12	48	57.1	0.711	3.384	0.711	3.384	0.828	1.1	4.85
28	31	26	20	80	9x14x12	58	73.6	1.203	5.506	1.203	5.506	1.067	1.3	4.85
34	33	29	20	80	9x14x12	63.7	74.6	1.062	5.012	1.062	5.012	1.298	1.6	6.58
34	33	29	20	80	9x14x12	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58

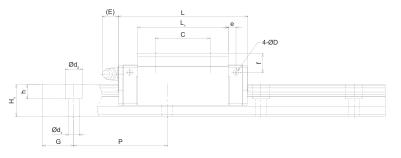

1N≒0.102kgf

Δ


H-RN...S Series, H-RL...S Series

	Externa	al dime	ensions		Dimensions of block										
Model No.	Height H	Width W	Length L		С	M×ℓ	Lı						D	Grease nipple	Нз
H 15RNS	28	34	56.5	26	26	M4 × 5	40.7	6	10	4.7	7.7	3.25	3.3	A-M5	4.5
H 15RLS	28	34	64.8	26	26	M4 x 5	49.1	6	10	4.7	7.7	3.25	3.3	A-M5	4.5
H 20RNS	30	44	73.2	32	36	M5 × 6	53.1	8	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H 20RLS	30	44	89.1	32	50	M5 × 6	69	8	7.5	10.7	6.7	4.25	3.3	B-M6F	6.0
H 25RNS	40	48	83.2	35	35	M6 × 8	58.3	8	13	10.2	12	5	3.3	B-M6F	7.0
H 25RLS	40	48	103.1	35	50	M6 × 8	78.2	8	13	10.2	12	5	3.3	B-M6F	7.0
H 30RNS	45	60	99.3	40	40	M8 × 10	70.8	8	10.3	9.8	8	5.8	5.2	B-M6F	7.5
H 30RLS	45	60	121.5	40	60	M8 × 10	93	8	10.3	9.8	8	5.8	5.2	B-M6F	7.5
H 35RNS	55	70	111.8	50	50	M8 x 12	80.8	10	15	9.7	13.5	6.5	5.2	B-M6F	9.0
H 35RLS	55	70	137.2	50	72	M8 x 12	106.2	10	15	9.7	13.5	6.5	5.2	B-M6F	9.0

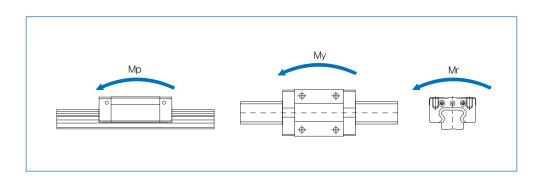
Composition of Model Name & Number



- 1 Model No.
- Material of block : No symbol-Standard material / M-Stainless

Type of block : RN-Rectangular standard type / RL-Rectangular long type / FN-Flange standard type / FL-Flange long type A No symbol-Standard block / E-Special block specification

- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ-End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)
- O Number of blocks assembled in one shaft
- S-Spacer chain type
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / Gs-Special preload (*2)
- Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- Iso symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- I No symbol-Standard rail / E-special rail specification B Number of axes used in the same plane
 - (*1) See Symbol List of Optional Parts at page 101. (*2) See Radial Clearance at page 18.
 - (*3) See Standard Tap Hole Type of Rail at page 49. (*4) See Selection of Precision Class at page 20.

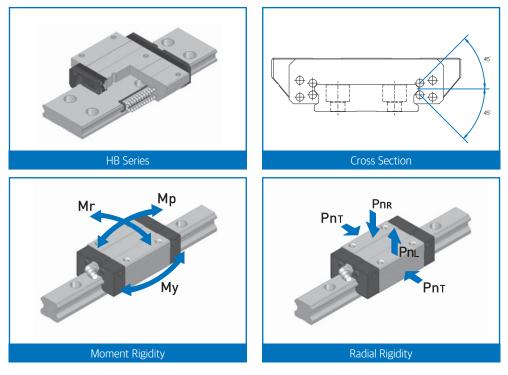


Unit : mm

	Dimensions of rail						ad rating	9		Mass				
Width	W2	Height	G	Pitch	d1xd2xh	с	C Co		Мр	l	My	Mr	Block	Rail
W1 ±0.05	VV2	Hı	G		uixuzxii	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	13	20	60	4.5×7.5×5.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.18	1.3
15	9.5	13	20	60	4.5×7.5×5.3	13.7	19.3	0.165	0.769	0.165	0.769	0.154	0.23	1.3
20	12	16.5	20	60	6×9.5×8.5	17.6	23.9	0.221	1.049	0.221	1.049	0.251	0.31	2.2
20	12	16.5	20	60	6x9.5x8.5	21.1	30.7	0.370	1.692	0.370	1.692	0.322	0.41	2.2
23	12.5	20	20	60	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
23	12.5	20	20	60	7x11x9	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.71	3.0
28	16	26	20	80	9x14x12	48	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85
28	16	26	20	80	9x14x12	58	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.85
34	18	29	20	80	9x14x12	63.7	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6.58
34	18	29	20	80	9x14x12	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58

1N≒0.102kgf

3. Wide Linear Motion Guide HB Series


1) Structure of HB Series

Δ

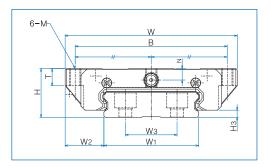
WON Wide Linear Motion Guide HB Series has a four-row circular arc-groove structure in the raceway groove of a rail or block. In addition, it has a 4-direction equal load type in which it can bear equal load rating for vertical compression load, tensile load, and horizontal load as its ball as a rolling element is combined at 45 degree. Therefore, the model reduces friction resistance and ensures smooth motion and long life. Since the model has a wide and short rail, moment works only with one shaft in a narrow space. It is applicable to place that requires high rigidity.

2) Features of HB Series

- a. High quality, high precision, and elimination of labor.
- b. High rigidity and high precision for implementing stable travel precision for a long time.
- c. Excellent wear resistance and friction resistance that ensure a long life.
- d. The face-to-face duplex structure just like the D/F combination of ball bearing, excellent at autoadjusting and error-absorbing.
- e. A higher quantity of balls than that of H Series; higher rigidity and wider rail; sufficient moment working only with one shaft

Types and Features

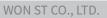
Category	Туре		Shape & Feature	
Flange type	HB-F		 A general type with the tap-proce ssed flange of a block, supporting installation from bottom to top and from top to bottom 4-direction equal load type with high rigidity and high load 	Electric spark machine Loader CNC lathe Industrial robot Semiconductor display manufacturing
Compact type	HB-R		 A compact type with the tap-proc essed top of a block and without flange 4-direction equal load type with high rigidity and high load 	equipment Measuring equipmentWafer transfer equipment Construction equipment Railway vehicle
		Standard an	d maximum lengths of rail	
	G			G


Unit : mm

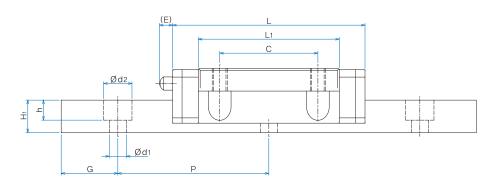
Model No.	HB17	HB21	HB27	HB35
	110	130	160	280
	230	230	280	440
	350	380	400	680
	470	480	640	840
Standard length	550	530	880	1000
	:	÷	:	÷
	1990	1930	3820	3800
		1980	3880	3960
			3940	
Standard pitch P	40	50	60	80
G	15	15	20	20
Max. length	20	00	40	00

HB-F Series

Δ

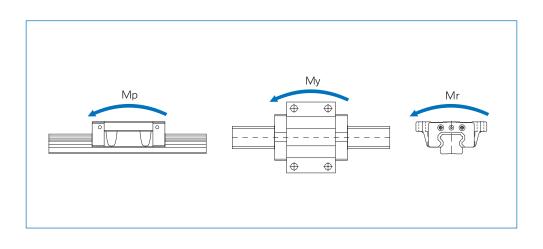

	Exter	nal dimen	sions		Dimensions of block								
Model No.	Height H	Width W	Length L	В	С	М	Lı	т	N	E	Grease nipple	Нз	
HB17F	17	60	51	53	26	M4	37.4	6	4	3.5	A-Ø3	2.5	
HB21F	21	68	59	60	29	M5	45.4	8	5	3.5	A-Ø3	3.3	
HB27F	27	80	72.5	70	40	M6	54.7	10	6	10.3	B-M6F	3.5	
HB35F	35	120	105.3	107	60	M8	82.1	14	7.6	10.3	B-M6F	4	

Composition of Model Name & Number

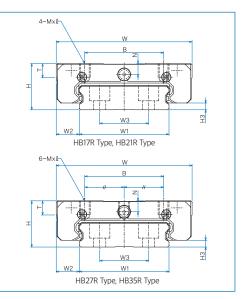


- 1 Model No.
- 2 Type of block : F-Flange standard type / R-Rectangular standard type
- **3** No symbol-Standard block / E-Special block specification
- Z Type of seal : No symbol-No seal / UU-End seal / SS-End seal+ Inside seal / ZZ-End seal+ Inside seal+ Metal scraper/ UULF -End seal+ LF seal / SSLF-End seal+ Inside seal+ LF seal / ZZLF-End seal+ Inside seal+ Metal scraper + LF seal (*1) **5** Number of blocks assembled in one shaft
- 6 No symbol-Full ball type
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- 8 Length of rail
- **9** Size of G value: standard G value has no symbol
- **10** No symbol-Rail counterbore type (top assembly)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*3)
- 2 No symbol-Standard rail / E-special rail specification
- 13 Number of axes used in the same plane

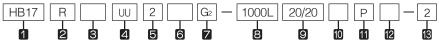
(*1) See Symbol List of Optional Parts at page 101. (*2) See Radial Clearance at page 18. (*3) See Selection of Precision Class at page 20.



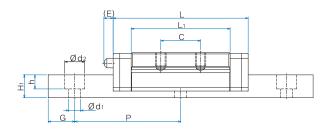
Unit : mm


	Dimensions of rail						Basic load Static allowance moment kN·m					Mass			
Width			Height		Pitch		C Co		Мр Му			My	Mr	Block	Rail
W1 0 -0.05	W2	Wз	H1	G	P	d1xd2xh	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
33	13.5	18	8.6	15	40	4.5x7.5x5.3	7.3	12.2	0.081	0.381	0.081	0.381	0.205	0.15	1.9
37	15.5	22	11	15	50	4.5x7.5x5.3	8.4	14.8	0.119	0.547	0.119	0.547	0.278	0.24	2.9
42	19	24	15	20	60	4.5x7.5x5.3	15.3	24.8	0.239	1.114	0.239	1.114	0.527	0.47	4.5
69	25.5	40	19	20	80	7x11x9	33.9	53.2	0.773	3.528	0.773	3.528	1.851	1.40	9.6

1N≒0.102kgf

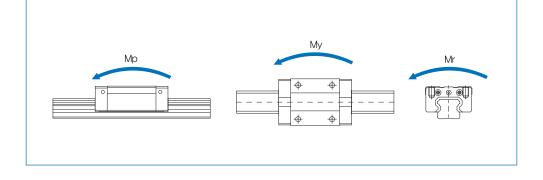

Δ

	Exterr	nal dimer	nsions	Dimensions of block									
Model No.	Height H	Width W	Length L	В	С	МХł	Lı	т	N	E	Grease nipple	Hз	
HB17R	17	50	51	29	15	M4 X 5	37.4	5.2	4	3.5	A-Ø3	2.5	
HB21R	21	54	59	31	19	M5 X 6	45.4	8	5	3.5	A-Ø3	3.3	
HB27R	27	62	72.5	46	32	M6 X 6	54.7	10	6	10.3	B-M6F	3.5	
HB35R	35	100	105.3	76	50	M8 X 8	82.1	14	7.6	10.3	B-M6F	4	


Composition of Model Name & Number

- 1 Model No.
- Z Type of block : F-Flange standard type / R-Rectangular standard type
- **3** No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+ Inside seal / ZZ-End seal+ Inside seal+ Metal scraper / UULF -End seal+ LF seal / SSLF-End seal+ Inside seal+ LF seal / ZZLF-End seal+ Inside seal+ Metal scraper+ LF seal (*1)
 Number of blocks assembled in one shaft
- 6 No symbol-Full ball type
- Symbol of clearance : No symbol-Normal preload / GI-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 8 Length of rail
- Size of G value: standard G value has no symbol
- 10 No symbol-Rail counterbore type (top assembly)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*3)
- No symbol-Standard rail / E-special rail specification
- Number of axes used in the same plane

(*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Selection of Precision Class at page 20.



Unit : mm

	Dimensions of rail						Basic load Static allowance moment kN·m				ŀm	Mass			
Width			Height		Pitch		C Co		Мр		Му		Mr	Block	Rail
W1 0 -0.05	W2	W3	Hı	G	P	d1xd2xh	kŇ	kŇ	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
33	8.5	18	8.6	15	40	4.5x7.5x5.3	7.3	12.2	0.081	0.381	0.081	0.381	0.205	0.13	1.9
37	8.5	22	11	15	50	4.5x7.5x5.3	8.4	14.8	0.119	0.547	0.119	0.547	0.278	0.19	2.9
42	10	24	15	20	60	4.5x7.5x5.3	15.3	24.8	0.239	1.114	0.239	1.114	0.527	0.36	4.5
69	15.5	40	19	20	80	7x11x9	33.9	53.2	0.773	3.528	0.773	3.528	1.851	1.20	9.6

1N≒0.102kgf

4. Slim Linear Motion Guide S Series

1) Structure of S Series

Δ

Linear Motion Guide S Series has a four-row circular arc-groove structure and a 4-direction equal load type. It also has an auto-adjusting face-to-face D/F structure. Using a ball as a rolling element, the model is a slim-type guide with a low sectional height, high rigidity and less noise.

2) Features of S Series

- a. High quality, high precision, and elimination of labor.
- b. High rigidity and high precision for implementing stable travel precision for a long time.
- c. Excellent wear resistance and friction resistance that ensure a long life.
- d. The face-to-face duplex structure just like the D/F combination of ball bearing, excellent at auto-ad justing and error-absorbing.
- e. Various specifications for easy design.
- f. Easy to use due to high compatibility of rail and block.
- g. 4-direction equal load and high-rigidity structure.
- h. A slim shape suitable for horizontal motion, ensuring stable running.

5. Slim Spacer Chain Linear Motion Guide S...S Series

1) Structure of S...S Series

Like S Series, Linear Motion Guide S...S Series has the 4-direction equal load type and auto-adjusting faceto-face D/F structure. It uses a ball as a rolling element and has a spacer between balls to prevent them from colliding each other in rolling motion. Since it makes less noise and more stable circulating motion than a fullball type, it is possible to implement quiet running at high speed. In addition, the spacer can serve as a pocket of a lubricant.

2) Features of S...S Series

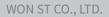
- a. As a spacer-incorporated type that improves frictional properties and prevents the collision of balls, the model not only allows stable circulating motion and smooth running but also reduces noise.
- b. Since a resin spacer is applied to the model, it is possible to prevent the collision of balls and the loss of oil film, and to generate less particles and dust.
- c. High quality, high precision, and elimination of labor.
- d. High rigidity and high precision for implementing stable travel precision for a long time.
- e. Excellent wear resistance and friction resistance that ensure a long life.
- f. The face-to-face duplex structure just like the D/F combination of ball bearing, excellent at auto-ad justing and error-absorbing.
- g. Various specifications for easy design.
- h. Easy to use due to high compatibility of rail and block.

Radial Rigidity

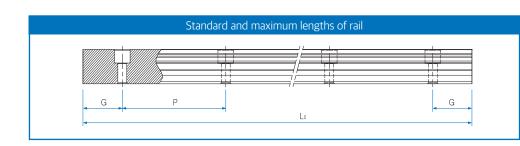
Linear Motion Guide

WON

Slim Linear Motion Guide S, S...S Series

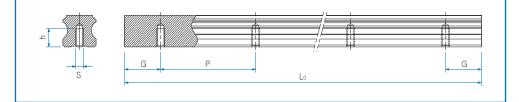

S Series (Full-ball Type) S...S Series (Spacer Chain Type) Spacer Ball Chain 45° 45° Cross Section Details of spacer of S...S Series Мр Pnr Mr Pnı Рnт M٧

Moment Rigidity

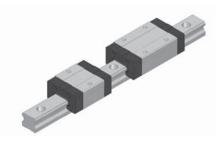

Types and Features

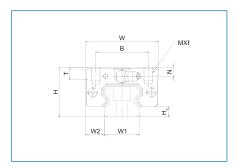
A

Category	Туре	Shape & Feature	
Compact	S-RC S-RCS	 A slim type with the tap-pro cessed top of a block, minimizing the width(W) and height(H) of a block 4-row circular structure and 4-di rection equal load type with 45° contact angle S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	Cartesian coordi- nated robot Linear actuator
type	S-RN S-RNS	 The same cross section as in S-RC Series; a slim type with the in creased load rating by enlarging the entire length (L1) of a block 4-row circular structure and 4-di rection equal load type with 45° contact angle S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	Automation system Semiconductor & display manufacturing system LED inspection equipment Dispenser equipment
Flange	S-FC S-FCS	 A slim type with the tap-pro cessed top of a block, minimizing the width(W) and height(H) of a block 4-row circular structure and 4-di rection equal load type with 45° contact angle S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	Medical Equipment High-speed transport system Woodworking machine Take-out robot Small machine tool Laser processor
type	S-FN S-FNS	 The same cross section as in S-RC Series; a slim type with the in creased load rating by enlarging the entire length (L1) of a block 4-row circular structure and 4-di rection equal load type with 45° contact angle S Series are types with a spacer retain er helping to reduce ball-to-ball friction and generate less noise and dust 	Precision measurement equipment

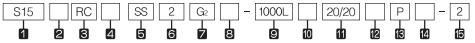

WON

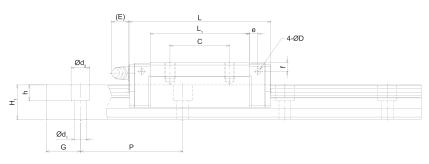
Unit : mm


Model No.	S15	S20	S25				
	160	160	220				
	220	220	280				
	280	280	340				
	:	340	400				
Standard length	1360	:	460				
	1480	1960					
	1600	2080	2200				
		2200	2320				
			2440				
Standard pitch P	60	60	60				
G	20	20	20				
Max. length	4000						

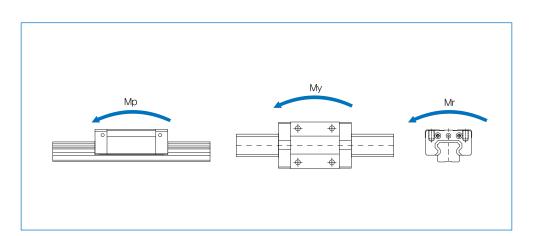

Standard tap hole type of rail

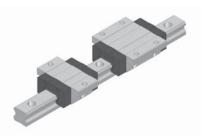
Model No.		h(mm)
S15	M5	8
S20	M6	10
S25	M6	12

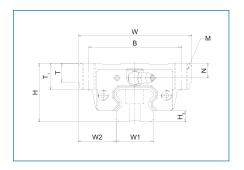

S-RC Series, S-RN Series


	Extern	al dime	nsions				I	Dime	nsio	ns o	fblock				
Model No.	Height H	Width W	Length L	В	с	M×ℓ	Lı	т	N	Е	f		D	Grease nipple	H₃
S15RC	24	24	39.8	20	-	MARC	24.0	C	C	47	27	2.25	2.2		4.5
S15RN	24	34	56.5	26	26	M4x6	40.7	6	6	4.7	3.7	3.25	3.3	A-M5	4.5
S20RC	28	42	47.8	32	-	M5x7	27.6	75	FF	10.7	4.7	4.25	3.3		6
S20RN	20	42	66.8	52	32	IVIDX7	46.7	7.5	5.5	10.7	4.7	4.25	5.5	B-M6F	0
S25RC	22	10	59.4	25	-	MGVQ	34.4	0	c	10.2	F	5	3.3	B-M6F	7
S25RN	55	33 48	83.2	- 35 M6>	8X0IVI	58.2	8	3 6 10.2	5 10.2 5	Э	5.5	D-1/10F	/		

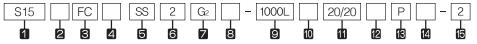
Composition of Model Name & Number

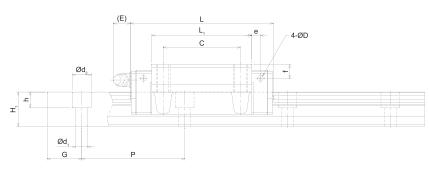

- 1 Model No.
- Material of block : No symbol-Standard material / M-Stainless
- S Type of block : RC-Rectangular short type / RN-Rectangular standard type / FC-Flange short type/ FN-Flange standard type
- No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ -End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)
- 6 Number of blocks assembled in one shaft
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- 8 Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- 9 Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- 2 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- 3 Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- No symbol-Standard rail / E-special rail specification
 Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 67.
 (*4) See Selection of Precision Class at page 20.



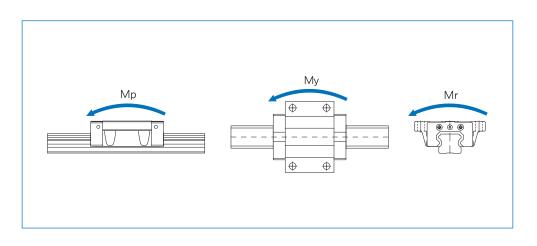

Unit : mm

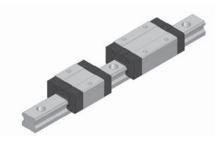
	Dimensions of rail					load ing	Sta	atic allowa	m	Mass				
Width	W2	Height	G	Pitch	d1xd2xh	C Co			Мр	l	Мy	Mr	Block	Rail
W1 ±0.05	VV2	Hı	U	Р	UIAU2AII	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	13	20	60	4.5x7.5x5.3	9.0	10	0.042	0.224	0.042	0.224	0.079	0.096	1.3
CI	9.0	CI	20	60	4.3×7.3×3.3	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.156	1.5
20	11	16.5	20	60	6x9.5x8.5	12.0	13.1	0.063	0.342	0.063	0.342	0.137	0.153	2.2
20	11	C.01	20	60	0,9,2,6,0	16.8	21.2	0.173	0.838	0.173	0.838	0.223	0.246	Z.Z
22	10 г	20	20	60	0 7x11x9	19.2	20.4	0.123	0.670	0.123	0.670	0.246	0.254	2.0
23	12.5	20	20	00		27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.413	3.0

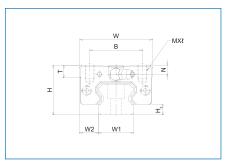

S-FC Series, S-FN Series


			ensions					Di	nens	ions o	of bloc	k				
Model No.	Height H	Width W	Length L	В	С	М	Lı	Т	T1	N	E	f		D	Grease nipple	Н₃
S15FC	24	52	39.8	41	-	МГ	24.0	C	7	C	47	27	2.25	2.2		4 5
S15FN	24	52	56.5	41	26	M5	40.7	6	/	6	4.7	3.7	3.25	3.3	A-M5	4.5
S20FC	20	50	47.8	40	-	MC	27.6	0	0		10.7	47	4.25	2.2		C
S20FN	28	59	66.8	49	32	M6	46.7	8	9	5.5	10.7	4.7	4.25	3.3	B-M6F	6
S25FC	33	72	59.4	60	-	MO	34.4	0	10	6	10.2	5	F	2.2		7
S25FN	33	73	83.2	60	35	M8	58.2	9	10	б	10.2	5	5	3.3	B-M6F	/

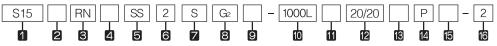
Composition of Model Name & Number


- 1 Model No.
- Material of block : No symbol-Standard material / M-Stainless
- S Type of block : RC-Rectangular short type / RN-Rectangular standard type / FC-Flange short type/ FN-Flange standard type
- No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ -End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)
- 6 Number of blocks assembled in one shaft
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / G5-Special preload (*2)
- 8 Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- 9 Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- 2 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- 3 Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- No symbol-Standard rail / E-special rail specification
 Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 67.
 (*4) See Selection of Precision Class at page 20.



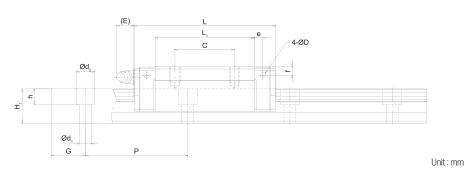

Unit : mm

	Dimensions of rail				Basic rat	load ing	Sta	atic allowa	m	Mass				
Width	W2	Height	G	Pitch	dıxd2xh	C Co			Мр	ľ	Чy	Mr	Block	Rail
W1 ±0.05	VV2	Hı	G	Р	UIXUZXII	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	18.5	13	20	60	4.5x7.5x5.3	9.0	10	0.042	0.224	0.042	0.224	0.079	0.125	1.3
CI	10,0	CI	20	00	4.387.383.5	12.6	16.2	0.115	0.552	0.115	0.552	0.129	0.203	I,3
20	19.5	16.5	20	60	6x9.5x8.5	12.0	13.1	0.063	0.342	0.063	0.342	0.137	0.187	2.2
20	19.5	C.01	20	60	0%9.5%6.5	16.8	21.2	0.173	0.838	0.173	0.838	0.223	0.301	Z.Z
23	25.0	20	20	60	7x11x9	19.2	20.4	0.123	0.670	0.123	0.670	0.246	0.320	3.0
25	23.0	20	20	00			27.0	33.1	0.337	1.636	0.337	0.163	0.398	0.527

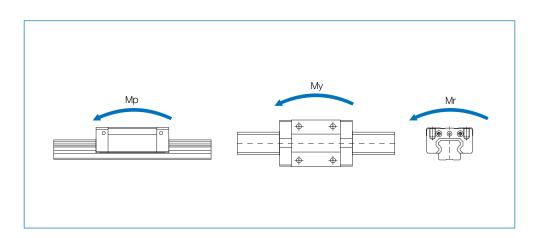

S-RC...S Series, S-RN...S Series

	Extern	al dime	nsions					Dime	NSION	s of Blo	ICK				
Model No.	Height H	Width W	Length L	В	с	M×ℓ	Lı	т	N	E	f		D	Grease nipple	H₃
S15RCS	24	24	39.8	26	-	M4x6	24.0	6	6	47	27	3.25	3.3		4 5
S15RNS	24	34	56.5	20	26	1014×0	40.7	0	ю	4.7	3.7	5.25	5.5	A-M5	4.5
S20RCS	28	42	47.8	32	-	M5x7	27.6	7.5	5.5	10.7	47	4.25	3.3	B-M6F	6
S20RNS	20	42	66.8	52	32	IVIDX7	46.7	7.5	5.5	10.7	4.7	4.25	5.5		0
S25RCS	22	40	59.4	25	-	MCvO	34.4	0	C	10.2	F	F	2.2		7
S25RNS	33 48	48	83.2	35	35	M6×9	58.2	8	6	10.2	5	5	3.3	B-M6F	7

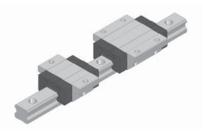
Composition of Model Name & Number

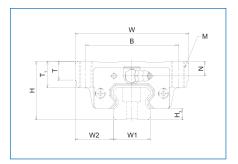

Model No.

- Material of block : No symbol-Standard material / M-Stainless
- S Type of block : RC-Rectangular short type / RN-Rectangular standard type / FC-Flange short type/ FN-Flange standard type
- A No symbol-Standard block / E-Special block specification

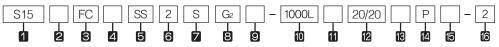

Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ -End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)

- 6 Number of blocks assembled in one shaft
- S-Spacer chain type
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- 10 Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- 2 Size of G value: standard G value has no symbol
- 13 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- 2 Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- No symbol-Standard rail / E-special rail specification
- 10 Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 67.
 (*4) See Selection of Precision Class at page 20.





	Dimensions of rail				Basic rat	load ing	Sta	atic allowa	m	Mass						
WIDTH	W2	Height	G	Pitch	d1xd2xh	C Co					Мр	l	Мy	Mr	Block	Rail
W1 ±0.05	VV2	Hı	G	Р	U1XU2X11	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m		
15	9.5	13	20	60	4.5x7.5x5.3	8.3	10	0.042	0.224	0.042	0.224	0.079	0.096	1.3		
CI	9.5	CI	20	60	4.3×7.3×3.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.156	1.5		
20	11	16 F	20	60		11,1	13.1	0.063	0.342	0.063	0.342	0.137	0.153	11		
20	11	16.5	20	60	6x9.5x8.5	16.1	21.2	0.173	0.838	0.173	0.838	0.223	0.246	2.2		
22	10 E	20	20	20	60	7,11,0	17.9	20.4	0.123	0.670	0.123	0.670	0.246	0.254	2.0	
23	12.5	20	20	00	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.413	3.0		


S-FC...SSeries, S-FN...SSeries

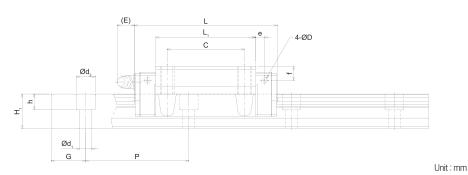
	Extern	al dim	ensions					Di	men	sion	s of bl	ock				
Model No.	Неіднт Н	Width W	Length L	В	С	М	Lı	т	Tı	N	E	f		D	Grease nipple	Hз
S15FCS	24	52	39.8	41	-		24.0	6	7	c	47	27	3.25	2.2		4.5
S15FNS	- 24	52	56.5	41	26	M5	40.7	б	/	6	4.7	3.7	3.25	3.3	A-M5	4.5
S20FCS	28	59	47.8	49	-	MC	27.6	8	9		10.7	47	4.25	2.2		6
S20FNS	28	59	66.8	49	32	M6	46.7	ð	9	5.5	10.7	4.7	4.25	3.3	B-M6F	6
S25FCS	22	72	59.4	<u> </u>	-	140	34.4	0	10	C	10.2	F	F	2.2		7
S25FNS	33	73	83.2	60	35	M8	58.2	9	10	6	10.2	5	5	3.3	B-M6F	7

Composition of Model Name & Number

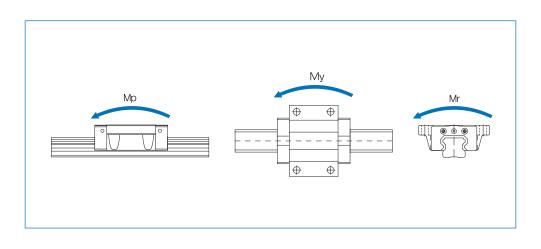
1 Model No.

Material of block : No symbol-Standard material / M-Stainless

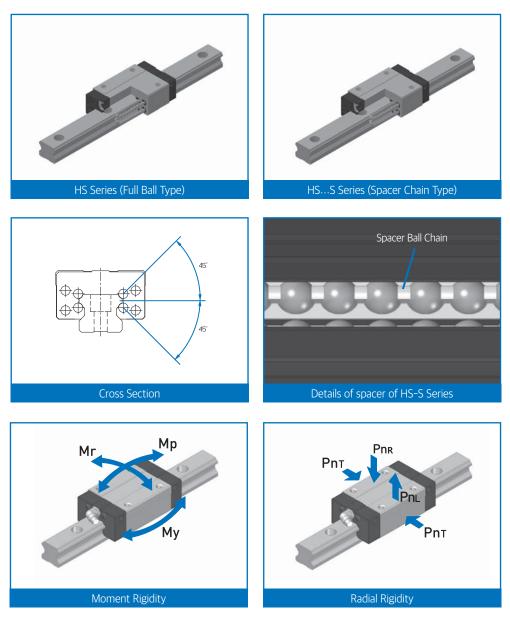
S Type of block : RC-Rectangular short type / RN-Rectangular standard type / FC-Flange short type/ FN-Flange standard type


A No symbol-Standard block / E-Special block specification

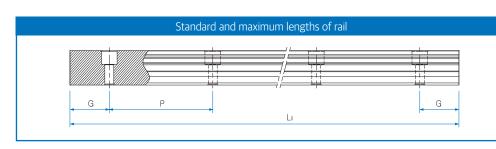
Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ-End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)


- 6 Number of blocks assembled in one shaftled in one shaft
- S-Spacer chain type
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- 10 Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- 2 Size of G value: standard G value has no symbol
- 13 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- 2 Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- No symbol-Standard rail / E-special rail specification
- Number of axes used in the same plane

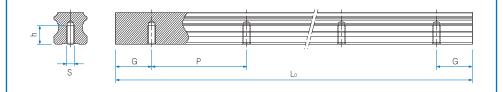
(*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 67.
 (*4) See Selection of Precision Class at page 20.




	Dimensions of rail				Basic rati	load ing	Sta	atic allowa	m	Mass								
WIDTH	W2	Height H1	G	Pitch	d1xd2xh	C Co			Мр		Му	Mr	Block	Rail				
W1 ±0.05	VV2	Hĭ	G	Р	u1xu2x11	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m				
15	18.5	13	20	60	4.5x7.5x5.3	8.3	10	0.042	0.224	0.042	0.224	0.079	0.125	1.3				
CI	10.J	15	20	60	4.3X7.3X3.3	12.1	16.2	0.115	0.552	0.115	0.552	0.129	0.203	1.5				
20	10 E	16.5	20	60	6x9.5x8.5	11.1	13.1	0.063	0.342	0.063	0.342	0.137	0.187	22				
20	19.5	10.5	20	60	6X9,5X8,5	16.1	21.2	0.173	0.838	0.173	0.838	0.223	0.301	2.2				
22	25.0	20	20	60	7v11v0	17.9	20.4	0.123	0.670	0.123	0.670	0.246	0.320	2.0				
23	25.0	20	20	60 7x11x9	60 7x11x9	7x11x9 2	7x11x9	7x11x9	0 7x11x9 -	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.527	3.0

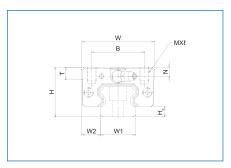

A

6. Slim Linear Motion Guide HS, HS...S Series

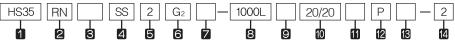


Unit : mm

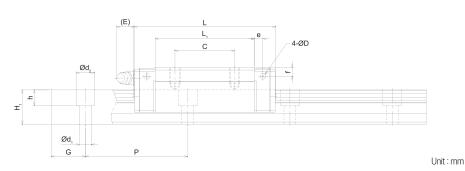
					01111 : 111111
Model No.	HS25	HS30	HS35	HS45	HS55
	220	280	440	570	780
	340	360	520	675	900
	400	440	600	780	1020
	:	520	760	885	÷
Standard length	2200	:	840	:	2820
	2320	2520	÷	2880	2940
	2440	2680	2840	2985	3060
		2840	2920	3090	
			3000		
Standard pitch P	60	80	80	10.5	120
G	20	20	20	22.5	30
Max. length			4000		

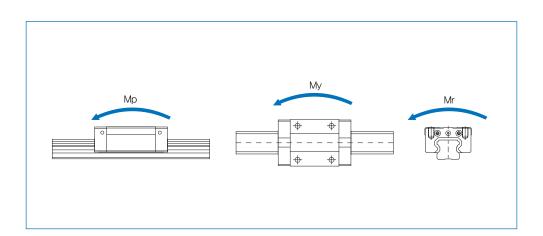

Standard tap hole type of rail

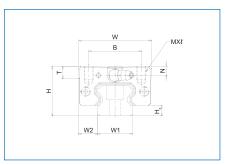
Model No.	S	h(mm)
HS25	M6	12
HS30	M8	15
HS35	M8	17
HS45	M12	24
HS55	M14	24


HS-RN Series, **HS-RL Series**

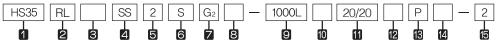
	Extern	al dime	nsions				Dim	ensio	ons of	block	(
Model No.	Height H	Width W	Length L	В	С	M×l	Lı	т	N	E	f		D	Grease nipple	Нз
HS25RN	20	40	83.2	25	35		58.3	0	0	10.2	0	F	2.2		7
HS25RL	36	48	103.1	35	50	M6×6.5	78.2	8	9	10.2	8	5	3.3	B-M6F	7
HS30RN	42	<u> </u>	99.3	40	40	M00	70.8	0	0.2	0.0	ГO	го	г٦		7
HS30RL	42	60	121.5	40	60	M8x8	93	8	8.2	9.8	5.9	5.8	5.2	B-M6F	7
HS35RN	40	70	111.8	FO	50	M010	80.8	15	10	0.7	0.5	сг	гэ		7 5
HS35RL	48	70	137.2	50	72	M8x10	106.2	15	10	9.7	8.5	6.5	5.2	B-M6F	7.5


Composition of Model Name & Number


- 1 Model No.
- 2 Type of block : RC-Rectangular short type / RN-Rectangular standard type / FC-Flange short type / FN-Flange standard type
- 3 No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ-End seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / ZZLF-End seal+Side seal+Side seal+Side seal+Inner seal+Metal scraper+LF seal / ZZLF-End seal+Side seal+Side seal+Inner seal+Metal scraper+LF seal / ZZLF-End seal+Side seal+Side seal+Side seal+Inner seal+Metal scraper+LF seal / ZZLF-End seal+Side seal
- 6 Number of blocks assembled in one shaft
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 8 Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- 9 Length of rail
- 10 Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- 2 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- No symbol-Standard rail / E-special rail specification Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 77.
 (*4) See Selection of Precision Class at page 20.

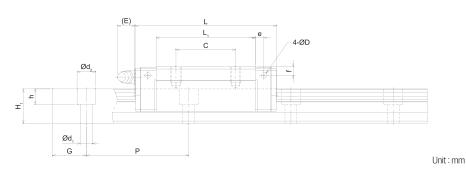


		Dimens	ions c	ofrail		Basic rat	load ing	Sta	atic allowa	ince mo	ment kN	m	Mass	
Width	W2	Height	G	Pitch	d1xd2xh	с	Co		Мр	l	Мy	Mr	Block	Rail
W1 ±0.05	VV2	Hı	G	Р	u1Xu2X11	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
23	12.5	20	20	60	7x11x9	27.0	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
25	12,5	20	20	60	781189	32.8	43.6	0.596	2.760	0.596	2.760	0.525	0.71	5.0
28	16	25.1	20	80	9x14x14.1	50.4	57.1	0.711	3.384	0.711	3.384	0.828	0.9	A OF
28	10	25.1	20	80	9×14×14.1	60.3	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.85
34	18	27	20	80	9x14x13	67.0	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6 5 9
34	18	27	20	80	9X14X13	80.2	96.2	1.797	8.172	1.797	8.172	1.674	2.01	6.58

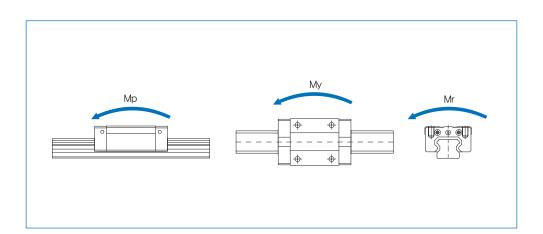

HS-RN...S Series, HS-RL...S Series

	Extern	aldime	ensions				Dime	ensio	ns of	block					
Model No.	Height H	Width W	Length L	В	С	M×ℓ	Lı	т	N	E	f		D	Grease nipple	H₃
HS25RNS	20	40	83.2	25	35		58.3	0	0	10.2	0	F	2.2		7
HS25RLS	36	48	103.1	35	50	M6x6.5	78.2	8	9	10.2	8	5	3.3	B-M6F	/
HS30RNS	42	<u> </u>	99.3	40	40	M00	70.8	8	0.2	0.0	ГO	го	г р		7
HS30RLS	42	60	121.5	40	60	M8x8	93	ð	8.2	9.8	5.9	5.8	5.2	B-M6F	/
HS35RNS	10	70	111.8	FO	50	M9.10	80.8	15	10	9.7	0 E	6 E	БЭ		75
HS35RLS	48	70	137.2	50	72	M8x10	106.2	15	10	9.7	8.5	6.5	5.2	B-M6F	7.5

Composition of Model Name & Number



- 1 Model No.
- 2 Type of block : RC-Rectangular short type / RN-Rectangular standard type / FC-Flange short type/ FN-Flange standard type
- 3 No symbol-Standard block / E-Special block specification
- Type of seal : No symbol-No seal / UU-End seal / SS-End seal+Side seal+Inner seal / DD-Double seal+Side seal+Inner seal / ZZ -End seal+Side seal+Inner seal+Metal scraper / KK-Double seal+Side seal+Inner seal+Metal scraper / UULF-End seal+LF seal / SSLF-End seal+Side seal+Inner seal+LF seal / DDLF-Double seal+Side seal+Inner seal+LF seal / ZZLF-End seal+Side seal+Inner seal+Metal scraper+LF seal / KKLF-Double seal+Side seal+Inner seal+Metal scraper+LF seal (*1)


S Number of blocks assembled in one shaft

- **6** No symbol-Full ball type / S-Spacer chain type
- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- 8 Material of end plate : No symbol Standard material / I Stainless / N Aluminum
- Length of rail
- Material of rail : No symbol-Standard material / M-Stainless
- Size of G value: standard G value has no symbol
- 2 No symbol-Rail counterbore type (top assembly) / A-Rail tap hole type (bottom assembly) (*3)
- 3 Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- No symbol-Standard rail / E-special rail specification Number of axes used in the same plane
- (*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3) See Standard Tap Hole Type of Rail at page 77.
 (*4) See Selection of Precision Class at page 20.

		Dimens	ions o	f rail		Basic rati		Static allowance moment kN·m					Mass	
Width	W2	Height	G	Pitch	d1xd2xh	С	Co		Мр	I	Му	Mr	Block	Rail
W1 ±0.05	VV2	Hı	G	Р	u1xu2x11	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
23	12.5	20	20	60	7x11x9	25.8	33.1	0.337	1.636	0.337	1.636	0.398	0.53	3.0
25	12,5	20	20	60	781189	31.7	43.6	0.596	2.760	0.596	2.760	0.525	0.71	5.0
28	16	25.1	20	80	9x14x14.1	48.0	57.1	0.711	3.384	0.711	3.384	0.828	0.9	4.85
20	10	20,1	20	80	9814814.1	58.0	73.6	1.203	5.506	1.203	5.506	1.067	1.1	4.00
34	18	27	20	80	9x14x13	63.7	74.6	1.062	5.012	1.062	5.012	1.298	1.5	6.58
54	10	27	20	80	9814815	77.1	96.2	1.797	8.172	1.797	8.172	1.674	2.01	0.00

7. Miniature Linear Motion Guide M Series

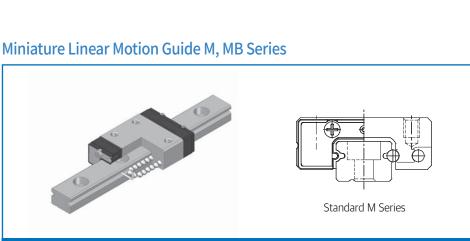
1) Structure of M Series

Δ

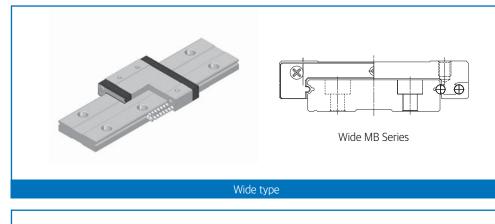
WON Miniature Linear Motion Guide M Series has a shape of a gothic-arch groove in the raceway of a rail and a block and a 4-direction equal type structure with 2-row 4-point contact balls at 45 degree. This model, though small-sized, supports stable travel and high rigidity for variable load or complex load under which a direction or size changes.

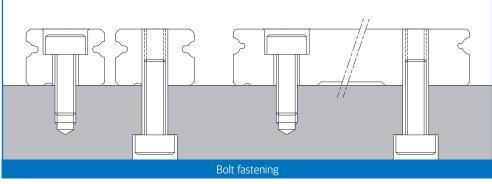
2) Features of M Series

- a. A compact and highly-rigid 4-direction equal load type.
- b. A variety of specifications in consideration of space and load rating in order for easy design.
- c. It is convenient to maintain balls at the time of block-rail assembly, for a block has the wire to prevent ball separation built in.
- d. This model made of stainless steel is resistant for rust. Therefore, it is suitable in a rust-resistive envi ronment or the cleanroom that inhibits generation of particles.

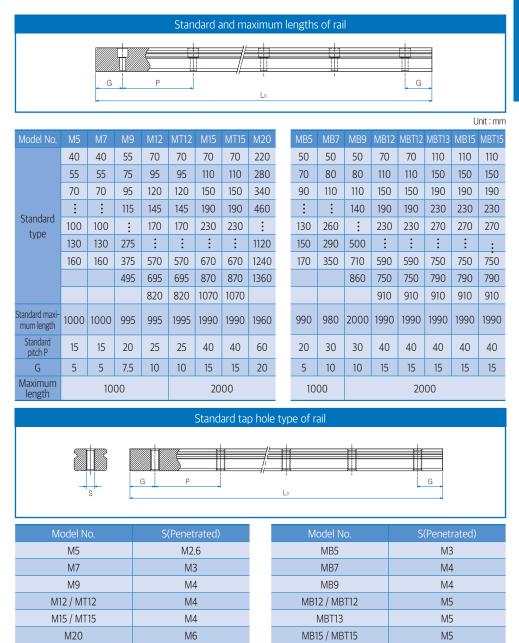

8. Wide Miniature Linear Motion Guide MB Series

1) Structure of MB Series

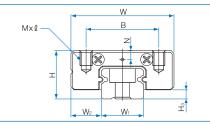

Like M Series, WON Miniature Linear Motion Guide MB Series has the 4-direction equal load type. As its rail and block get widened, the model improves basic load rating and moment load compared to M Series.


2) Features of MB Series

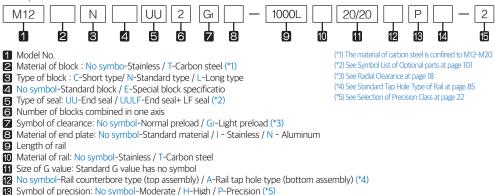
- a. Wide block and rail, an increased number of effective balls, and improved load rating and moment load.
- b. Wider than a general type of miniature linear motion guide, increased rigidity, and very favorable in the use of one axis.
- c. A compact and highly-rigid 4-direction equal load type.
- d. A variety of specifications in consideration of space and load rating in order for easy design.
- e. It is convenient to maintain balls during block-rail assembly, for a block has the wire to prevent ball separation.
- f. This model made of stainless steel is resistant for rust. Therefore, it is suitable in a rust-resistive environment or the cleanroom that inhibits generation of particles. (The bearing steel materials for MB 12 and MB 15 are reserved.)


Types and Features

A

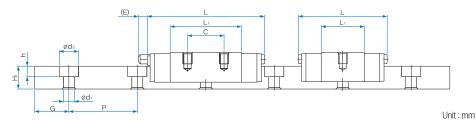

Category	Туре		Shape & Feature	
	M-C	and the second		
Compact type	M-N	and the second	Standard Type of Miniature Linear Motion Guide The bearing steel materials for M12 and M15 (MT12, MT15) are available	Semiconductor inspection equipment Semiconductor assembly
	M-L	and the		equipment Display inspection Head-axis LED inspection equipment Pneumatic
	MB-C MBT-C	- H.	Wider block (W) and longer total	machinery Table cylinder Automation machinery Medical equipment Smart actuator
Flange type	MB-N MBT-N	e e e la e	length (L1) than M Series; highly-rig id and wide type with improved load rating and allowance moment The bearing steel materials for MB12 and MB15 (MBT12, MBT15) are ava ilable	Cartesian coordinated robot UVW stage
	MB-L MBT-L			

WON

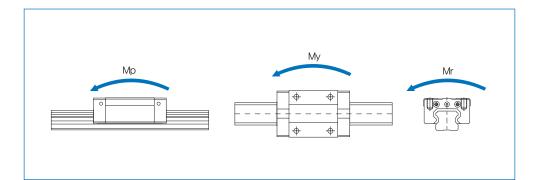


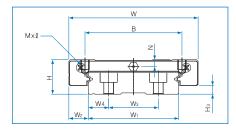
	Exterr	nal dime	nsions			Dimens	ions of bl	ock			
Model No.	Height H	Width W	Length L	В	С	M×l	Lı	Ν	E	Grease nipple	Hз
M 5C			17	8	_	M2 x 1 <u>.</u> 5	9 <u>.</u> 4				
M 5N	6	12	20	0			12.4	1.2	-	-	1
M 5NA			20	-	7	M2.6 × 1.5	12.7				
M 7C			19 <u>.</u> 8		-		9 <u>.</u> 6				
M 7N	8	17	24 <u>.</u> 3	12	8	M2 x 2.5	14 <u>.</u> 1	1 <u>.</u> 5	_	_	1.5
M7L	0	17	31.8	12	13		21 <u>.</u> 6	1.0			1.0
M7LA			31.0		12		20 <u>.</u> 8				
M 9C			22 <u>.</u> 4		-		11 <u>.</u> 8				
M 9N	10	20	31.3	15	10	M3 x 3	20 <u>.</u> 7	22	_	_	2
M9L	10	20	41 <u>.</u> 4	15	16		30.8	<u> </u>			2
M9LA			41.4		15		30.0				
M 12C			26.4		—		12 <u>.</u> 8				
M 12N	13	27	34 <u>.</u> 9	20	15	M3 × 3.5	21.3	2 <u>.</u> 7	-	-	3
M 12L			45 <u>.</u> 4		20		31 <u>.</u> 8				
M 15C			34 <u>.</u> 4		-		17 <u>.</u> 7				
M 15N	16	32	44 <u>.</u> 4	25	20	M3 x 4	27 <u>.</u> 7	3 <u>.</u> 1	3.3	A-M3	4
M 15 L			59 <u>.</u> 4		25		42.7				
M 20 C			39 <u>.</u> 8		-		22 <u>.</u> 2				
M 20 N	20	40	51 <u>.</u> 8	30	25	M4 x 6	34 <u>.</u> 2	4 <u>.</u> 2	3.3	A-M3	5
M 20 L			69.8		30		52.2				

% The carbon steel materials based rails for M12 and M15 (MT12, MT15) are reserved.



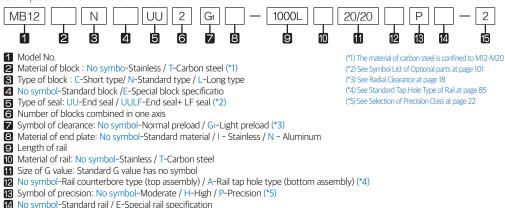
- No symbol of precision. No symbol Moderate / 11 High / P Pr
- Number of axes used in the same plane


WON ST CO., LTD.



	[Dimen	sions	of rail		Basic loa	ad rating	Sta	tic allow	ance m	oment N	l∙m	Mas	SS
Width		Height	G	Pitch		С	Co	Ν	lp	N	ly	Mr	Block	Rail
W1 ±0.05	W2	Hi	G	Р	d1xd2xh	C N	N	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
0						516	757	1.3	7.1	1.3	7.1	2.01	3.1	
⁵ -0.02	3 <u>.</u> 5	3.7	5	15	2.4x3 <u>.</u> 6x0.8	631	1,009	2.2	11.6	2.2	11.6	2.67	4.0	139
						901	1,136	1.9	11.8	1.9	11.8	4.14	6.4	
_ 0	5	5	5	15	24x42x23	1,197	1,703	4.2	23.1	4.2	23,1	6,22	9.0	253
7 -0.02	э	5	5	15	24X42X23	1,631	2,650	10.1	50.0	10,1	50.0	9.67	12,6	200
						1,549	2,460	10.1	50.0	10.1	50.0	9.07	12.0	
						1,180	1,485	3.1	17.9	3.1	17.9	6.90	9.9	
0	5.5	6	7.5	20	35x6x35	1,721	2,545	9.3	46.6	9.3	46.6	11.84	17.1	391
9 -0.02	<u>.</u> .	0	7.0	20	0.07070.0	2,375	4,030	21.9	102.8	21.9	102.8	18.74	25.2	001
0						2,175	2,385	5.4	32,9	5.4	32.9	14.79	19.8	
12_0.025	7 <u>.</u> 5	8	10	25	35x65x45	3,023	3,816	14.4	75.8	14.4	75.8	23,66	31.5	679
0.025						4,246	6,200	34.8	169.1	34.8	169.1	38.44	45.9	
0						3,418	3,895	12,2	71.6	12,2	71.6	29.99	37.8	
¹⁵ -0.025	8 <u>.</u> 5	10	15	40	35x65x45	4,540	5,842	28.6	148.7	28.6	148.7	44.99	57.6	1071
0.025						6,492	9,737	73.5	351.2	73.5	351.2	74.98	85.5	
. 0						4,512	5,299	20.7	115.9	20.7	115.9	54.05	80.1	
²⁰ -0.03	10	11	20	60	6x95x55	6,191	8,328	50.2	252.7	50.2	252.7	84.94	119.7	1572
-0.03						8,396	12,870	118.6	554.4	118.6	554.4	131.27	176.4	

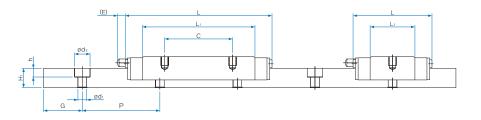
1N=0.102kgf



	Extern	al dime	nsions			Dimens	ions of bl	ock			
Model No.	Height H	Width W	Length L	В	С	M×l	Lı	Ν	E	Grease nipple	H₃
MB 5C	6 <u>.</u> 5	17	21	13	-	M2.5 x 1.5	13.4	1 <u>.</u> 4	_	_	1,3
MB 5N	0.0	17	25	15	-		17 <u>.</u> 4	1.4			1.0
MB 7C			24		-		12 <u>.</u> 6				
MB 7N	9	25	33	19	10	M3 x 3	21 <u>.</u> 6	1.7	-	-	2
MB 7L			43 <u>.</u> 5		19		32 <u>.</u> 1				
MB 9C			28 <u>.</u> 1	21	-		16.5				
MB 9N	12	30	40.2	21	12	M3 x 3	28.6	3.2	-	-	3
MB 9L			52	23	24		40.4				
MB 12C			31 <u>.</u> 1		-		17 <u>.</u> 5				
MB 12N	14	40	44.5	28	15	M3 x 3.5	30.9	3	-	-	4
MB 12L			59.7		28		46 <u>.</u> 1				
MBT 13C			35.3		-		18.7				
MBT 13N	15	50	49.2	35	18	M4 x 4.5	32.6	3.1	3.3	A-M3	3
MBT 13L			68.6		35		52				
MB 15C			42.8		-		25.2				
MB 15N	16	60	56 <u>.</u> 6	45	20	M4 x 4 <u>.</u> 5	39	3.5	3.3	A-M3	4
MB 15L			75 <u>.</u> 8		35		58.2				

**The carbon steel materials based rails for M12 and M15 (MT12, MT15) are reserved. **As for MBT13, only carbon steel is prepared.

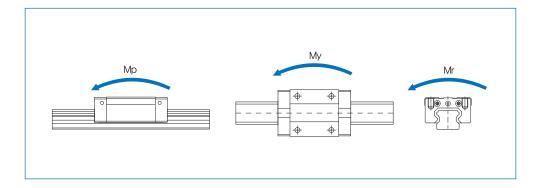
Composition of Model Name & Number



Number of axes used in the same plane

88 Linear Motion Guide

WON ST CO., LTD.



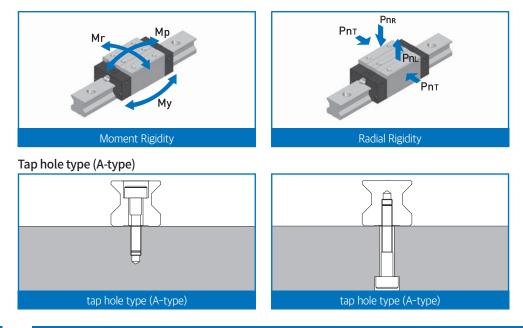
Unit : mm

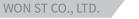
WON

		Dir	nen	sions	ofr	ail		Basic lo	ad rating	Stat	ic allow	ance mo	oment k	N∙m	Ма	SS
Width	14/	14/	14/	Height	~	Pitch	ما ر ام ر ام	С	Co	M	lp	M	ly	Mr	Block	Rail
W1 ±0.05	W2	Wз	W4	Hī	G		d1xd2xh	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
10 0	3 <u>.</u> 5			4	5	20	29x48x16	668	1,094	2,6	13.3	2.6	13.3	5.63	5.3	299
10 _{-0.025}	3.0			4	5	20	29840810	806	1,430	4.4	21.4	4.4	21.4	7.36	6.8	299
0								1,102	1,514	3.4	19.5	3.4	19,5	10.83	11.7	
¹⁴ -0.05	5 <u>.</u> 5	-	-	5 <u>.</u> 5	10	30	35x6x32	1,631	2,650	10.1	51.1	10.1	51.1	18,95	18,9	560
-0,05								2,166	3,975	22.5	106.1	22.5	106.1	28.42	27.9	
0								1,515	2,121	6.2	33.4	6.2	33.4	19.41	23.4	
¹⁸ -0.05	6	-	-	7	10	30	35x6x45	2,197	3,606	18.2	87.6	18,2	87.6	33.00	39.6	912
0.00								2,878	5,303	37.8	172,9	37.8	172.9	48.52	54.9	
0								2,753	3,339	10.3	57.3	10.3	57.3	40.73	40.5	
²⁴ -0.05	8	-	-	8 <u>.</u> 5	15	40	45x8x45	4,015	5,723	31.2	152,2	31,2	152.2	69.83	68.4	1369
0.00								5,539	9,062	73.8	338,7	73.8	338.7	110.56	99.9	
								3,694	4,351	14.3	82,8	14.3	82.8	66.1	60.0	
30 _{-0.05}	10	-	-	9	15	40	45x8x45	5,457	7,599	43.7	219.3	43.7	219.3	115.5	103.8	2086
								7,576	12,142	111.5	517.4	111.5	517.4	184.6	165.5	
0								4,954	6,056	26.9	145.3	26.9	145.3	128.40	85.5	
42 _{-0.05}	9	23	9 <u>.</u> 5	9 <u>.</u> 5	15	40	4.5x8x4.5	6,579	9,085	62.5	306.5	62.5	306.5	192,60	126.0	2886
0.05								9,076	14,384	147.8	680.6	147.8	680.6	304.94	183.6	

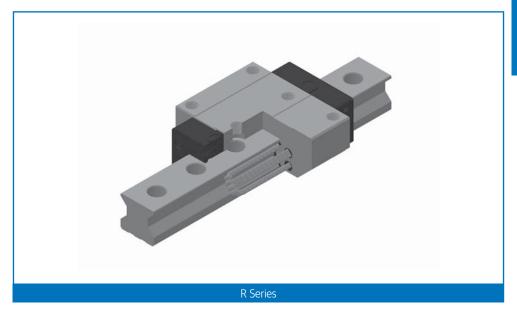
1N≒0<u>.</u>102kgf

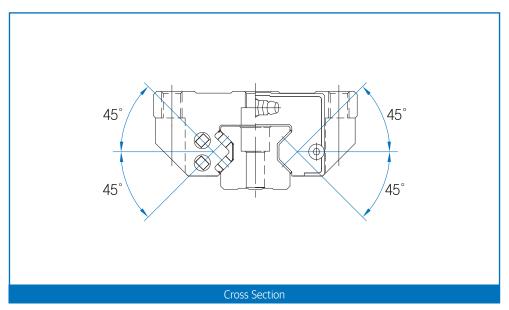
9. Roller Linear Motion Guide R Series

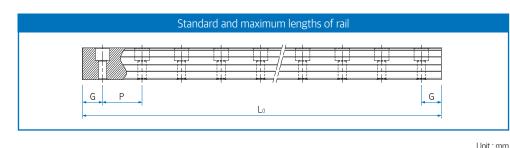

1) Structure of R Series


Δ

WON Linear Motion Guide R Series uses the roller in the raceway surface of a rail and a block as a rolling element, and its four-row cylindrical roller has the contact angle of 45° which makes it possible to bears vertical tensile compression load and horizontal load equally. In the model, a roller, a rolling element, has less elastic displacement than a ball so that its displacement by external load is low. Due to the wide area of contact between the raceway surface and a roller, it can bear high load with high rigidity. Therefore, the model has a long life span, and excellent impact resistance and wear resistance. In addition, since it has less friction resistance, it supports smooth motion and quiet running. By imposing appropriate preload on a roller according to use conditions, it is possible to enhance more rigidity of a linear motion guide.


2) Features of R Series


- a. High quality, high precision, and elimination of labor
- b. High rigidity and high precision for implementing stable travel precision for a long time
- c. Excellent wear resistance and friction resistance that ensure a long life
- d. High rigidity and high load capacity, compared to ball type devices with the same model number
- e. Low displacement for impact load or variable load, compared to ball type linear motion guides; excellent vibration resistance with a short vibration decay time for natural frequency
- f. High basic load rating, compared to ball type linear motion guides with the same specification, makes it possible to support a compact design through the use of a smaller model number than that of a ball type device. In case of the same model number, it is possible to have a longer life span due to high load rating.
- g. A variety of specifications for easy design


Types and Features

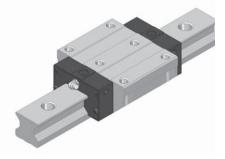
A

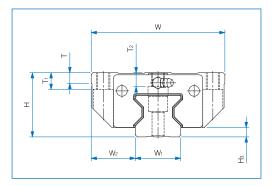
Category	Туре	Shape & Feature	
Flange	R-FN	 A roller type with the tap-pro cessed flange of a block, support ing installation from bottom to top and from top to bottom 4-direction equal load type with high rigidity and high load 	
type	R-FN	 The same cross section as in R-F Series; a roller type with increased load rating by enlarging the entire length (L1) of a block 4-direction equal load type with high rigidity and high load 	Machine tool CNC machining center CNC tapping center NC milling machine Boring machine Multiple machining center
Compact	R-RN	 A compact type with the tap-pro cessed top of a block, minimizing the width (W) of a block 4-direction equal load type with high rigidity and high load 	Planner miller Large injection machine Heavy-duty cutting machine Wire-cut pentahedral processing center Display test equipment
type	R-RL	 The same cross section as in R-R Series; a roller type with increased load rating by enlarging the entire length (L1) of a block 4-direction equal load type with high rigidity and high load 	


WON ST CO., LTD.

WON

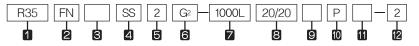
						Unit : mm
Model No.	R25	R30	R35	R45	R55	R65
	220	280	280	570	780	1270
	280	360	360	675	900	1570
	340	440	440	780	1020	1870
	400	520	520	885	1140	2170
Ctandard type	460	600	600	990	1260	2470
Standard type	:	:	:	:	:	2770
	3820	3760	3760	3615	3600	3070
	3880	3840	3840	3720	3720	3670
	3940	3920	3920	3825	3840	3970
	4000	4000	4000	3930	3960	
Standard pitch P	30	40	40	52.5	60	75
G	20	20	20	22.5	30	35
Max. length	4000	4000	4000	3930	3960	3970


Standard tap hole type of rail



Model No.	S	h(mm)
R25	M6	12
R30	M8	15
R35	M8	17
R45	M12	24
R55	M14	24
R65	M16	25

R-FN Series, **R-FL Series**


Α

	Extern	al dim	ensions						Din	nensi	ons of	fbloc	k					
Model No.	Неіднт Н	Width W	Length L	В	С	C2	М	Lı	т	T1	T2	N	E	θ 1	Nı	heta 2	Grease nipple	Нз
R 25FN	36	70	92.2	57	45	40	M8	63.3	7.5	9	6.7	5.5	12	6	5.5	15.2	B-M6F	6.5
R 25FL	50	70	110.2	57	45	40	IVIO	81.3	7.5	9	0.7	5,5	ΙZ	0	5,5	24.2	D-IVIOF	0.5
R 30FN	42	90	103.8	72	52	44	M10	71	8	11	8	6.5	12	6	6	16	B-M6F	7
R 30FL	42	90	126.6	12	52	44	WIU	93.8	0	11	0	0.5	ΙZ	0	0	27.4	D-IVIOF	/
R 35FN	48	100	118.3	82	62	52	M10	79.5	8	12.5	10.5	7.6	12	12	7.6	16	B-M6F	7
R 35FL	40	100	142.3	02	02	52	WITU	103.5	0	12.5	10.5	7.0	ΙZ	12	7.0	28	D-IVIOF	/
R 45FN	60	120	146.3	100	80	60	M12	101.7	10	15	13.5	8	16	12	8	17.9	B-PT1/8	0 E
R 45FL	60	120	178.8	100	00	00	IVIIZ	134.2	10	IJ	15.5	0	10	12	0	34.1	D-P11/0	9.5
R 55FN	70	140	168.6	116	95	70	M14	121.6	12	18	13.4	9	16	13.5	9	21.3	B-PT1/8	10
R 55FL	70	140	207.7	110	95	70	10114	160.7	IZ	10	15.4	9	10	15.5	9	40.9	D-P11/0	10
R 65FN	90	170	207.2	142	110	82	M16	146.2	15	25	24	13.8	16	18.5	13.8	29.1	B-PT1/8	13
R 65FL	90	170	255.2	142	110	02	10110	194.2	15	25	24	15,0	10	10,5	13,0	53.1	D-F11/0	15

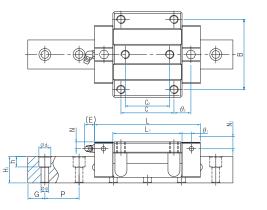
Composition of Model Name & Number

1 Model No.

- Type of block : RN-Rectangular standard type / RL-Rectangular long type / FN-Flange standard type / FL-Flange long type
 No symbol-Standard block / E-Special block specification
- Type of seal : SS-End seal+ Inside seal / ZZ-End seal+ Inside seal+ Metal scraper (*1)

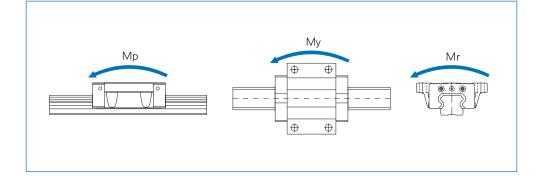
S Number of blocks assembled in one shaft

- Symbol of clearance : No symbol-Normal preload / G1-Light preload / G2-Heavy preload / GS-Special preload (*2)
- Z Length of rail
- 8 Size of G value: standard G value has no symbol
- O symbol-Rail counterbore type (top assembly) / A- Rail tap hole type (bottom assembly) (*3)
- Symbol of precision : No symbol-Moderate / H-High / P-Precision / SP-Super precision / UP-Ultra precision (*4)
- 11 No symbol-Standard rail / E-special rail specification
- 2 Number of axes used in the same plane

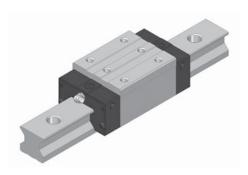

(*1) See Symbol List of Optional Parts at page 101. (*2) See Radial Clearance at page 18.

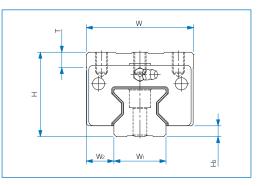
(*3)) See Standard Tap Hole Type of Rail at page 93. (*4) See Selection of Precision Class at page 23.

WON ST CO., LTD.

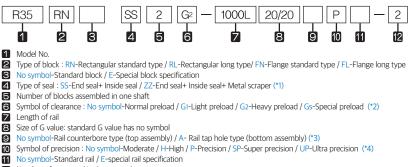


Linear Motion Guide

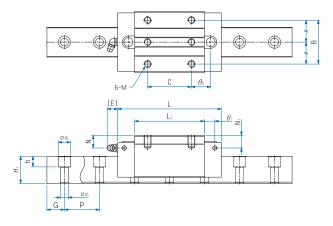

Unit : mm


	Dimensions of rail						load ing	Sta	atic allowa	ance mo	ment kN	m	Mass		
Width	W2	Height	G	Pitch	dıxd₂xh	С	Co		Мр	l	٩y	Mr	Block	Rail	
W1 ±0.05	VV2	Hı	G	Р	U 1X U 2X N	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m	
23	23.5	24	20	30	7x11x9.7	29.1	56.2	0.570	3.090	0.570	3.090	0.820	0.8	3.1	
25	25.5	24	20	50	/X11X9./	35.6	73.1	0.925	4.949	0.925	4.949	1.065	1.1	5.1	
28	31	28	20	40	9x14x12	44.4	87.3	0.985	5.395	0.985	5.395	1.470	1.4	1 1	
20	21	20	20	40	9814812	55.0	114.8	1.640	8.946	1.640	8.946	1.935	1.9	4.4	
34	33	31	20	40	9x14x12	61.0	114.0	1.460	7.972	1.460	7.972	2.345	2.1	6.2	
54	22	51	20	40	9814812	75.6	150.0	2.450	13.036	2.450	13.036	3.090	2.8	0.2	
45	37.5	38	22.5	52.5	14x20x17	103.8	202.0	3.265	17.712	3.265	17.712	5.430	4.0	10.1	
45	37.5	38	22.5	52.5	14XZUX17	132.3	276.2	5.840	30.565	5.840	30.565	7.440	5.3	10.1	
53	43.5	43.5	30	60	16x23x20	146.9	278.0	5.390	28.523	5.390	28.523	8.880	6.8	13.4	
22	45.5	45.5	50	60	10%25%20	181.9	380.3	8.960	49.534	8.960	49.534	11.690	8.9	15.4	
63	EDE	EE	25	75	18×26×22	231.0	450.6	10.600	56.301	10.600	56.301	17.140	13.0	20.1	
05	53.5 55 35 75	75	10720722	303.0	576.0	18.160	91.519	18.160	91.519	21.910	17.2	20.1			

R-RN Series, **R-RL Series**

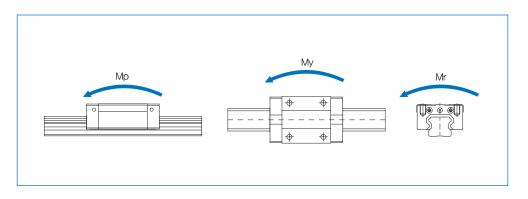

Δ

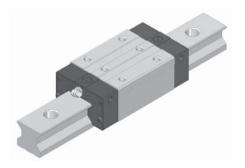
	Extern	al dime	nsions				Di	mens	ions o	fbloo	:k				
Model No.	Height H	Width W	Length L	В	с	МХł	Lı	т	N	E	θ_{1}	Nı	heta 2	Grease nipple	H₃
R 25RN	40	48	92.2	35	35	M6 x 9	63.3	9	9.5	12	6	9.5	20.2	B-M6F	6.5
R 25RL	40	40	110.2	55	50	IVIO X 9	81.3	9	9.5	IZ	0	9.5	21.7	D-IVIOF	0.5
R 30RN	45	60	103.8	10	40	M8 x 11	71	9	9.5	12	6	9	22	B-M6F	7
R 30RL	45	60	126.6	40	60	IVIð X I I	93.8	9	9.5	IZ	б	9	23.4	B-INIOF	/
R 35RN	55	70	118.3	EO	50	M0 v 12	79.5	12	1/6	12	12	14.6	22	B-M6F	7
R 35RL	55	70	142.3	50 72	M8 x 13	103.5	12	14.6	5 12	12	14.0	23	B-INIOF	/	
R 45RN	70	86	146.3	60	60	M10 x 20	101.7	20	18	16	12	18	27.9	B-PT1/8	9.5
R 45RL	70	00	178.8	00	80	IVITO X ZO	134.2	20	10	10	12	10	34.1	D-PII/O	9.5
R 55RN		100	168.6		75	M12 x 19	121.6	20	20 10		12 E	19	31.3	D DT1/0	10
R 55RL	80	100	207.7	75	95	WI Z X 19	160.7	20	19	16	13.5	19	40.9	B-PT1/8	10


Composition of Model Name & Number

2 Number of axes used in the same plane

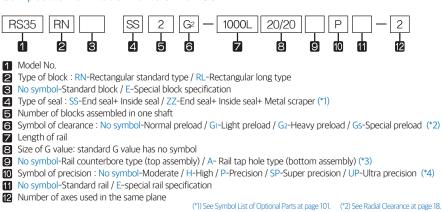
(*1) See Symbol List of Optional Parts at page 101.
 (*2) See Radial Clearance at page 18.
 (*3)) See Standard Tap Hole Type of Rail at page 93.
 (*4) See Selection of Precision Class at page 23.

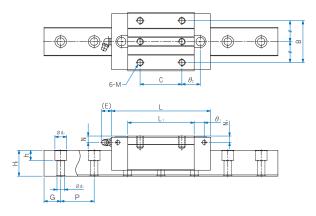

WON ST CO., LTD.


Unit : mm

WON

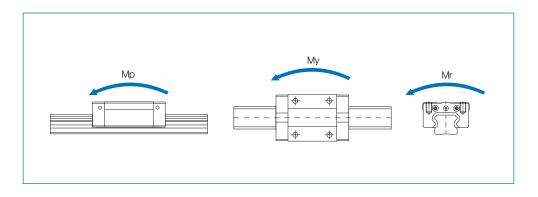
		Dimen	ISIONS (of Rail		BASIC LO	AD RATING		STATIC ALLOW	ANCE MO	MENT k N · m	ı	М	ASS						
Width		Height		Pitch		с	Co		Мр		Мy	Mr	Block	Rail						
W1 ±0.05	W2	Hı	G	P	d1xd2xh	kŇ	kŇ	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m						
23	12.5	24	20	30	7x11x9.7	29.1	56.2	0.570	3.090	0.570	3.090	0.820	0.7	3.1						
25	12.5	24	20	50	7×11×9.7	35.6	73.1	0.925	4.949	0.925	4.949	1.065	0.9	J.I						
28	16	28	20	40	0.14.10	44.4	87.3	0.985	5.395	0.985	5.395	1.470	1.2	4.4						
28	10	28	20	40	9x14x12	55.0	114.8	1.640	8.946	1.640	8.946	1.935	1.5	4.4						
24	18	31	20	40	0.14.10	61.0	114.0	1.460	7.972	1.460	7.972	2.345	2.0	6.2						
34	18	31	20	40	9x14x12	75.6	150.0	2.450	13.036	2.450	13.036	3.090	2.5	6.2						
45	20.5	38	22.5	52.5	14×20×17	103.8	202.0	3.265	17.712	3.265	17.712	5.430	3.9	10.1						
45	20.5	38	22.5	JZ.J	14×20×17	132.3	276.2	5.840	30.565	5.840	30.565	7.440	5.0	10.1						
53	22 E	12 E	20 6	20	20	20	20	20	20	60	16x23x20	146.9	278.0	5.390	28.523	5.390	28.523	8.880	6.2	13.4
55	23.5 43.5 30	00	10x23x20	181.9	380.3	8.960	49.534	8.960	49.534	11.690	8.1	15.4								


RS-RN Series, **RS-RL Series**


	Exterr	nal dime	nsions				Di	mens	ions c	of bloo	ck				
Model No.	Height H	Width W	Length L	В	С	МХł	Lı	т	N	E	θ_{1}	Nı	θ_2	Grease nipple	H₃
RS 25RN	36	48	92.2	35	35	M6 x 9	63.3	9	5.5	12	6	гr	20.2	B-M6F	6.5
RS 25RL	30	48	110.2	30	50	IVID X 9	81.3	9	5.5	IZ	б	5.5	21.7	B-INIOL	C.0
RS 35RN	48	70	118.3	50	50	M8 x 12	79.5	12	7.6	12	12	7.6	22	B-M6F	7
RS 35RL	40	70	142.3	50	72	IVIO X IZ	103.5	12	7.0	IZ	12	7.0	23	D-IVIOF	/
RS 45RN	60	06	146.3	60	60	M10 x 18	101.7	20	0	16	12	8	27.9	D DT1/0	9.5
RS 45RL	60	86	178.8	60	80	IVITU X TO	134.2	20	0 8	16	12	0	34.1	B-PT1/8	9.5
RS 55RN	70	100	168.6	75	75	M12 x 19	121.6	20	9	16	13.5	9	31.3	B-PT1/8	10
RS 55RL	70	100	207.7	75	95	WIIZ X 19	160.7	20	9	10	13.5	9	40.9	B-PTI/8	10
RS 65RN	90	126	207.2 76		70	M16 x 21	146.2	-	13.8	16	18.5	13.8	49.1	B-PT1/8	13
RS 65RL	90	126	255.2	76	120	IVITO X ZT	194.2	20	15.8	10	10.5	IJ,õ	48.1	D-P11/8	13

Composition of Model Name & Number

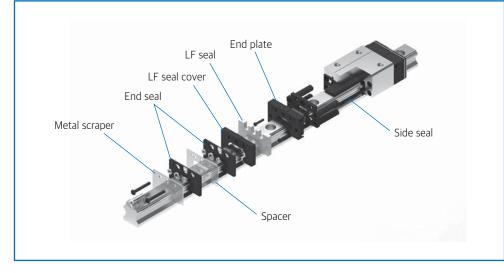
(*3)) See Standard Tap Hole Type of Rail at page 93. (*4) See Selection of Precision Class at page 23.


WON ST CO., LTD.

Unit : mm

WON

	Dimensions of rail					Basic rat	load ing		STATIC ALLOW	ANCE MOI	MENT k N · m	1	Mass	
$\underset{\pm 0.05}{\text{Width}}$	W2	Height H1	G	Pitch P	d1xd2xh	C Co kN kN		1 block	Mp Double blocks		My Double blocks	Mr 1 block	Block kg	Rail kg/m
23	12.5	24	20	30	7x11x9.7	29.1	56.2	0.570	3.090	0.570	3.090	0.820	0.6	3.1
25	12.5	24	20	30	7.11.3.7	35.6	73.1	0.925	4.949	0.925	4.949	1.065	0.8	5.1
24	18	31	20	40	0.14.10	61.0	114.0	1.460	7.972	1.460	7.972	2.345	1.7	6.2
34	18	31	20	40	9x14x12	75.6	150.0	2.450	13.036	2.450	13.036	3.090	2.1 6.2	
45	20.5	38	22.5	52.5	14x20x17	103.8	202.0	3.265	17.712	3.265	17.712	5.430	3.2	10.1
45	20.5	38	22.5	JZ.J	14X2UX17	132.3	276.2	5.840	30.565	5.840	30.565	7.440	4.2	10.1
53	23.5	43.5	30	60	16x23x20	146.9	278.0	5.390	28.523	5.390	28.523	8.880	5.3	13.4
22	25.5	45.5	50	60	10%25%20	181.9	380.3	8.960	49.534	8.960	49.534	11.690	6.8	15.4
62	21 Г	гг	25	75	18x26x22	231.0	450.6	5.390	34.735	5.390	34.735	8.880	30.4	20.1
63	31.5 55 35		75	18×26×22	303.0	576.0	8.960	60.425	8.960	60.425	11.690	33.6	20.1	


13 Options

A

1. Seal and rail cap

Item	Seal attachment position	Applied environments
End seal	End seal	• Where there is a lot of dust or particles
Side seal	Side seal	 Where foreign substance can easily flow in from the flank or bottom Where the assembled linear motion guide moves in a vertical, horizontal, or reverse direction
Inner seal	Inner seal	 Where there are a lot of cutting chips or for- eign substance Where cutting chips or foreign substances are highly likely to flow into a block
LF seal	End seal LF seal LF seal cover	 Where a long interval of refilling is needed due to a narrow space An environment at 40°C or so Where there needs to avoid any contact with organic solvents, such as thinner or milky white oil
Double seal	End seal End seal Spacer	• Where strong sealing is needed due to a lot of dust or cutting chips
Metal scarper	Metal scraper	• Where spatters, such as slag or metal powder, arise in welding

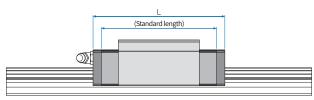
Symbol List of Optional Parts

Symbol	Optional parts
UU	End seal
SS	Side seal+ Inner seal + End seal
DD	Side seal+ Inner seal + End seal+ Spacer+ End seal
ZZ	Side seal+ Inner seal + End seal+ Metal scraper
KK	Side seal+ Inner seal + End seal+ Spacer+ End seal+ Metal scraper
UUUF	LF Unit+ End seal
SSLF	Side seal+ Inner seal + LF Unit+ End seal
DDLF	Side seal+ Inner seal + LF Unit+ End seal+ Spacer+ End seal
ZZLF	Side seal+ Inner seal + LF Unit+ End seal+ Metal scraper
KKLF	Side seal+ Inner seal + LF Unit+ End seal+ Spacer+ End seal+ Metal scraper

A

Optional-parts mapping table by model number

					Full ba	ll type					Spacer	ball chai	n type		Full roller type
Model N									MB						R
															25~65
End seal	UU	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Side seal	-	0	O *1)	-	0	0	O *1)	-	-	0	O *1)	0	O *1)	0	-
Inner seal	-	0	0	-	0	0	0	-	-	0	0	0	0	0	-
Side seal +Inner seal +End seal	SS	0	0	O *2)	0	0	0	-	-	0	0	0	0	0	O *2)
Side seal +Inner seal +End seal +Metal scraper	ZZ	0	0	0	0	0	0	-	-	0	0	0	0	0	○ *3)
Side seal +Inner seal +Double seal	DD	0	0	0	0	0	0	-	-	0	0	0	0	0	○ *3)
Side seal +Inner seal +End seal +Metal scraper	KK	0	0	0	0	0	0	-	-	0	0	0	0	0	○ *3)
LF seal +End seal	UULF	0	0	0	0	0	0	0	0	0	0	0	0	0	○ *3)
LF seal +Side seal +Inner seal +End seal	SSLF	0	0	0	0	0	0	-	-	0	0	0	0	0	○ *3)
LF seal +Side seal +Inner seal +Double seal	DDLF	0	0	0	0	0	0	-	-	0	0	0	0	0	○ *3)
LF seal +Side seal +Inner seal +End seal +Metal scraper	ZZLF	0	0	0	0	0	0	-	-	0	0	0	0	0	○ *3)
LF seal +Side seal +Inner seal +Double seal +Metal scraper	KKLF	0	0	-	0	0	0	-	-	0	0	0	0	0	○ *3)


*1) In H,HS, H...S, and HS...S Series, the basic optional part of model no. 30 and no. 35 is Inner Seal.

*2) In H Series (model no. 45 and no. 55) and HB Series and R Series, Side Seal and Inner Seal is an integral type.

*3) In R Series, if it is necessary to apply LF seal and metal scrapper, please contact us.

WON

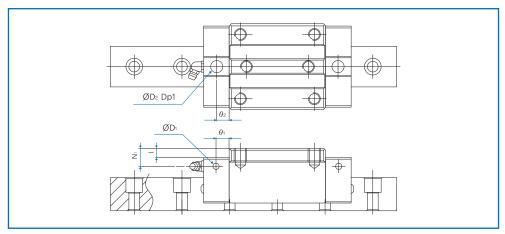
Dimension Table of the Installation of Optional Parts

Unit:mm

							L				
	Model No.	UU	SS	ZZ	DD	KK	UULF	SSLF	DDLF	ZZLF	KKLF
	15 FN/RN/FNS/RNS	56.5	56.5	60.7	61.5	65.7	70.5	70.5	75.5	74.7	79.7
	15 FL/RL/FLS/RLS	64.8	64.8	69	69.8	74	78.8	78.8	83.8	83	88
	20 FN/RN/FNS/RNS	73.2	73.2	78.2	79.4	84.4	87.2	87.2	93.4	92.2	98.4
	20 FL/RL/FLS/RLS	89.1	89.1	94.1	95.3	100.3	103.1	103.1	109.3	108.1	114.3
	25 FN/RN/FNS/RNS	83.2	93.2	89.2	90.4	96.4	97.2	97.2	104.4	103.2	110.4
	25 FL/RL/FLS/RLS	103.1	103.1	109.1	110.3	116.3	117.1	117.1	124.3	123.1	130.3
н	30 FN/RN/FNS/RNS	99.3	99.3	105.3	106.5	112.5	113.3	113.3	120.5	119.3	126.5
	30 FL/RL/FLS/RLS	121.5	121.5	127.5	128.7	134.7	135.5	135.5	142.7	141.5	148.7
	35 FN/RN/FNS/RNS	111.8	111.8	117.8	119	125	125.8	125.8	133	131.8	139
	35 FL/RL/FLS/RLS	137.2	137.2	143.2	144.4	150.4	151.2	151.2	158.4	157.2	164.4
	45 FN/RN/FNS/RNS	139	139	148.9	-	-	154	154	-	163.9	-
	45 FL/RL/FLS/RLS	170.8	170.8	180.7	-	-	185.8	185.8	-	195.7	-
	55 FN/RN/FNS/RNS	163	163	172.9	-	-	179	179	-	188.9	-
	55 FL/RL/FLS/RLS	201.1	201.1	211	-	-	217.1	217.1	-	227	-
	17 F/R	51	51	54.6	-	-	61.2	61.2	-	64.8	-
HB	21 F/R	59	59	63.4	-	-	69.2	69.2	-	73.6	-
пр	27 F/R	72.5	72.5	76.9	-	-	85.1	85.1	-	89.5	-
	35 F/R	105.3	105.3	110.9	-	-	120.3	120.3	-	125.9	-
	15 FC/RC/FCS/RCS	39.8	39.8	44	44.8	49	53.8	53.8	58.8	58	63
	15 FN/RN/FNS/RNS	56.5	56.5	60.7	61.5	65.7	70.5	70.5	75.5	74.7	79.7
S	20 FC/RC/FCS/RCS	47.8	47.8	52.8	54	59	61.8	61.8	68	66.8	73
5	20 FN/RN/FNS/RNS	66.8	66.8	71.8	73	78	80.8	80.8	87	85.8	82
	25 FC/RC/FCS/RCS	59.4	59.4	65.4	66.6	72.6	73.4	73.4	80.6	79.4	86.6
	25 FN/RN/FNS/RNS	83.2	83.2	89.2	90.4	96.4	97.2	97.2	104.4	103.2	110.4
	25 RN/RNS	83.2	83.2	89.2	90.4	96.4	97.2	97.2	104.4	103.2	110.4
	25 RL/RLS	103.1	103.1	109.1	110.3	116.3	117.1	117.1	124.3	123.1	130.3
HS	30 RN/RNS	99.3	99.3	105.3	106.5	112.5	113.3	113.3	120.5	119.3	126.5
115	30 RL/RLS	121.5	121.5	127.5	128.7	134.7	135.5	135.5	142.7	141.5	148.7
	35 RN/RNS	111.8	111.8	117.8	119	125	125.8	125.8	133	131.8	139
	35 RL/RLS	137.2	137.2	143.2	144.4	150.4	151.2	151.2	158.4	157.2	164.4

			Unic.min
Med	lel No.	l	_
MOU	Model No.		UULF
	5 C	17	21.4
	5 N/NA	20	24.4
	7 C	19.8	24.8
	7 N	24.3	29.3
	7 L/LA	31.8	36.8
	90	22.4	27.4
	9 N	31,3	36.3
	9 L/LA	41.4	46.4
М	12 C	26.4	32.4
	12 N	34.9	40.9
	12 L	45.4	51.4
	15 C	34.4	41.4
	15 N	44.4	51.4
	15 L	59.4	66.4
	20 C	39.8	46.8
	20 N	51.8	58.8
	20 L	69.8	58.8 76.8

Unit:mm

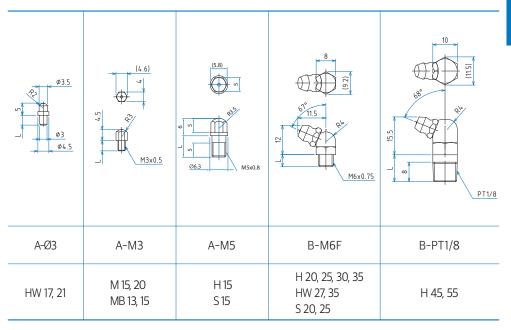

Unit:mm

Mod	el No.				
MOU	etno.	UU	UULF		
	5C	21	25.4		
	5N	25 24 33	29.4		
	7C	24	29		
	7N	33	38		
	7L	43.5	48.5		
	90	28.1	33.1		
	9N	40.2	45.2		
	9L	52	57		
MB	12C	31,1	37.1		
	12N	44.5	50.5		
	12L	59.7	65.7		
	13C	35.3	42.3		
	13N	49.2	56.2		
	13L	68.6	75.6		
	15C	42.8	49.8		
	15N	56.6	63.6		
	151	75.8	82.8		

2. Oil inlet

A

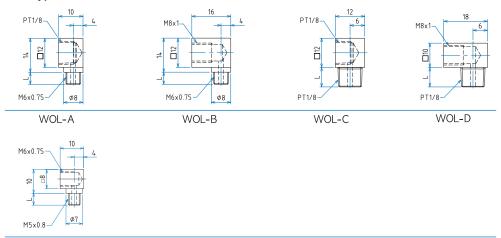
In R Series, it is possible to refill on the side and top. The standard specification of an oil inlet is 'not run through', in order to prevent foreign substances from flowing in a block. For use, please contact WON ST



Unit	;	m	٦r	r	١
------	---	---	----	---	---

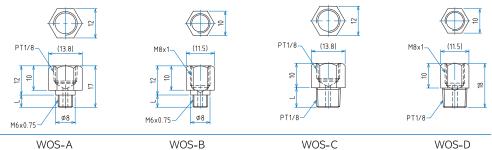
Made	l Ma	Hole	e for a side ni	pple		Top o	il inlet	
Mode	et NO.		Nı	D 1	D2	(O-ring)		θ₂
	25F(L)	6	5.5	3.3	10.2	P7	0.4	6
	30F(L)	6	6	5.1	10.2	P7	0.4	6.5
	35F(L)	12	7.6	5.1	10.2	P7	0.4	7.25
	45F(L)	12	8	5.1	10.2	P7	0.4	7
	55F(L)	13.5	9	5.1	10.2	P7	0.4	8
R	65F(L)	18.5	13.75	5.4	10.2	P7	0.4	11
	25R(L)	6	9.5	3.3	10.2	P7	4.4	6
	30R(L)	6	9	5.1	10.2	P7	3.4	6.5
	35R(L)	12	14.6	5.1	10.2	P7	7.4	7.25
	45R(L)	12	18	5.1	10.2	P7	10.4	7
	55R(L)	13.5	19	5.1	10.2	P7	10.4	8
	25R(L)	6	5.5	3.3	10.2	P7	0.4	6
	35R(L)	12	7.6	5.1	10.2	P7	0.4	7.25
RS	45R(L)	12	8	5.1	10.2	P7	0.4	7
	55R(L)	13.5	9	5.1	10.2	P7	0.4	8
	65R(L)	18.5	13.75	5.4	10.2	P7	0.4	11

WON ST provides various types of grease nipples necessary for lubricating a linear motion system.



	Nipple	e Thread (L) length									
Applied model no.	model no.	UU	SS	DD	ZZ	KK	UULF	SSLF	DDLF	ZZLF	KKLF
HB17, HB21	A-Ø3	4	4	-	6.5	-	9	9	-	11	-
M15, M20,MB13,MB15	A-M3	4.2	4.2	-	-	-	7.7	7.7	-	-	-
S-H15	A-M5	5	5	7.5	7.5	10	12	12	14.5	14.5	17
S-H20		7	7	10	10	12	14.5	14.5	17	17	19
S-H25		7	7	10	10	14.5	14.5	14.5	17	17	22
H30		7	7	12	12	14.5	14.5	14.5	19	19	22
H35	B-M6F	10	10	14.5	14.5	17	17	17	19	19	22
HB27		5	5	-	7	-	12	12	-	14.5	-
HB35		5	5	-	10	-	12	12	-	17	-
H45, H55	B-PT 1/8	8	8	-	11	-	15.5	15.5	-	18	-

4. Connection of oil pipes

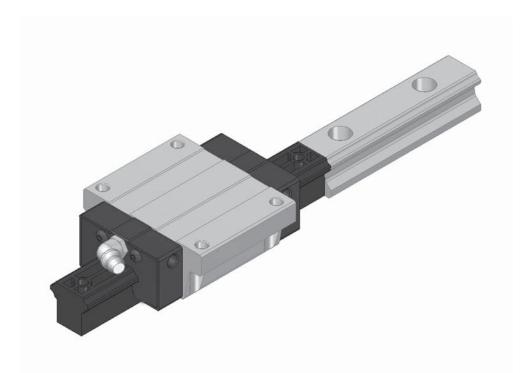

WOL Type

A

WOL-E

WOS Type

Applied model	Nipple	Thread (L) length									
no. model no.	UU	SS	DD	ZZ	KK	UULF	SSLF	DDLF	ZZLF	KKLF	
S-H15	WOL-E	5	5	7.5	7.5	10	12	12	14.5	14.5	17
S-H20	WOS-B	7	7	10	10	12	14.5	14.5	17	17	19
S-H25		7	7	10	10	14.5	14.5	14.5	17	17	22
H30		7	7	12	12	14.5	14.5	14.5	19	19	22
H35	WOL-A, WOL-B	10	10	14.5	14.5	17	17	17	19	19	22
HB27	WOS-A, WOS-B	5	5	-	7	-	12	12	-	14.5	-
HB35		5	5	-	10	-	12	12	-	17	-
H45, H55	WOL-C, WOL-D WOS-C, WOS-D	8	8	-	11	-	15.5	15.5	-	18	-



5. How to install with the use of a support rail

To get a block of a linear motion guide in or out of a rail, it is required to use a support rail for safety. If a rail is mounted on a rail without any support rail, a rolling element can be separated from the block. Moreover, internal parts can be damaged or destroyed by foreign substances.

Installing a block without a rolling element may sharply shorten life of the block, reduce load, and cause early destruction.

If you use a support rail, do not lean it. Adhere it to the end of a rail first and then push it in the rail direction by apply force gradually. If a block has a rolling element separated and gets contaminated by dust, please do not use the product but contact WON ST.

14 Precautions for Handling Linear Motion Guide

1. Handling

Δ

- 1) WON Linear Motion Guide is damp-proof packaged after grease removal and cleaning. So, please open it right before use.
- 2) As for the compatible product of rail and block, a plastic support rail is combined with the block. Please assemble it with the rail carefully.
- 3) If you reassemble a block-rail set product or a single block product after dismantling it into pieces, foreign substance may intrude into the block or cause performance degradation that leads to unsmooth rolling motion or damage. So please do not disassemble it at your discretion.
- 4) If either a rail or a block leans to one side, the block or rail may fall to be damaged. Please be careful not to get a block or rail separated.
- 5) A block' end plate is made of plastic. Imposing an impact on it may cause its damage. Please be careful

2. Lubrication

- 1) If the product supplied is coated with rust preventive oil, clean it off thoroughly first and then fill with a lubricant before use.
- 2) DO NOT mix with other lubricants with a different thickener or additive. If so, it may destroy the structure of grease or cause a harmful effect.
- 3) Viscosity of grease depends on temperature. It increases in winter due to low temperature, and friction of a linear motion guide resistance may increase.
- 4) If you need to use a special lubricant, please contact WON ST before use.
- 5) When you use oil as a lubricant, oil may fail to reach the raceway groove depending on the assembly status or direction of a block or rail. In this case, there is no lubrication effect. WON ST offers different lubrication methods suitable for assembly environments. So please contact us.

3. Caution for use

- 1) After opening the product, please put a damp-proof agent in a dry container for storage.
- 2) Please handle the product after wearing plastic gloves in a clean place.
- 3) Please be careful to prevent foreign substances that may impede rolling motion or cause functional damage.
- 4) Please use a holding door or cover to prevent a linear motion guide from being exposed directly to poor environments that may cause corrosion or damage.
- 5) As for the linear motion guide based on standard plastic end plate, use it at 80°C or below. If you need to use it at 80°C or above, please order a special metal end plate.
- 6) If rail of a linear motion guide is fixed at ceiling or in a high place and its block bears load downwards, it is possible for the block to be separated from the rail and for the block and its attached parts to fall as the end plate is damaged or a ball falls off. So, it is required to take safety measures, such as the installation of a safety device.

4. Storage

A rail may warp depending on a storage condition. For storage, place a linear motion guide horizontally in the package box offered by WON ST or its equivalent box with the flat bottom. Avoid a place with high or low temperature and high humidity.

Troubles and Troubleshooting of Linear Motion Guide

Туре	Trouble	Cause	Action
		Damage by life	Replace the linear motion guide.
Fatigue failure of the	 Flacking Caused by rolling fatigue of the rolling surface 	Overload	Review the model no. selected; Use a higher model no; Lower a level of load; Reinforce assembly precision for installation; Enhance the rigidity of base and table
rolling surface	 Maximum shear stress-induced internal cracks are expressed on the surface. 	Poor lubrication	Refill a lubricant; Shorten a refilling cycle of lubricant; Review the lubricant in use; Improve the lubricant passage.
		Intrusion of foreign substances	Improve seal performance; Add a seal; Take additio nal measures for dust prevention.
Indentation of the rolling		Impact load or exces- sive external load	Review the model no. selected; Make service conditions less strict; Lower a level of load; Reinforce assembly precision for installation; Use a higher model no.
surface	surface due to excessive external load	Careless handling	Improve the methods and conditions of handling to prevent impact and fall.
	Burning Rough surface of the rolling surface due to slight burning by friction between a rolling el-	Poor lubrication	Refill a lubricant; Use an appropriate lubricant; Improve lubrication
Seizing	ement and the rolling surface - Cause for the discoloration of the rolling sur- face, weakened hardness, and flaking	Overload	Review service conditions; Lower a level of load; Use a higher model no.; Enhance assembly preci- sion for installation.
	Cracking Partial breaking into pieces of a rolling element	mpact load or exces- sive external load	Review the model no. selected; Use a higher model no.; Lower a level of load; Reinforce assembly precision for installation
Cracking	or rolling surface due to excessive external load	Poor raceway circulation of a rolling element	Prevent foreign substances; Improve measures for dust prevention; Refill a lubricant; Shorten a refilling cycle of lubricant; Improve lubrication
Alexander	Abnormal wear Caused by the sliding of a rolling element and	Impact load or excessive external load	Review the model no. selected; Use a higher model no.; Lower a level of load; Reinforce assembly precision for installation.
Abnormal wear	the rolling surface; the more sliding, the rap- idly more wear	Intrusion of foreign substances	Reinforce seal performance; Improve measures for dust prevention
	 Accompany oxidation wear causing poor pre- cision and preload failure 	Poor lubrication	Refill a lubricant; Use an appropriate lubricant; Improve lubrication; Improve the lubrication passage.
	 Vibration This problem arises when running at vibrant 	Load	Review service conditions; Use a higher model no.; Reinforce assembly precision for installation.
Flatting corrosion	stroke causes the loss of oil film, and the ox- idation of the fine dust caused by the sliding of a rolling element and the rolling surface	Vibration	Improve transfer conditions; Replace a lubricant; Improve lubrication; Shorten a refilling cycle of lubricant.
	facilitates wear.	Intrusion of foreign substances	Improve a seal; Establish measures for dust prevention.
Rust	 Rust Caused by the loss of oil film or the contact of an exposed part with water, acid, and alkali. 	Intrusion of cooling water	Apply surface treatment for rust prevention; Improve seal performance; Replace a lubricant; replace a coolant; Refill a lubricant; Shorten a refilling cycle of lubricant.
generation	In particular, when cooling water flows in a	High humidity	Apply surface treatment for rust prevention; Improve environments.
	block, it degrades lubrication and causes rust. Early flaking arises due to concentrated stress.	Poor handling	Improve a storage place; Reinforce sealing treatment; Apply a sufficient amount of rust preventive oil.

<Table of comparison with the full ball type products made by different manufacturers>

1. H Series (Standard Type)

A

WON	ТНК	NSK	PMI	HIWIN
H 15FN H 15FL	HSR 15A, B, C HSR 15LC	LH 15EL, EM LH 15GL, GM	MSA 15A	HGW 15CA
H 20FN	HSR 20A, B, C	LH 20EL, EM	MSA 20A	HGW 20CA
H 20FL	HSR 20LA, LB, LC	LH 20GL, GM	MSA 20LA	HGW 20HA
H 25FN	HSR 25A, B, C	LH 25EL, EM	MSA 25A	HGW 25CA
H 25FL	HSR 25LA, LB, LC	LH 25GL, GM	MSA 25LA	HGW 25HA
H 30FN	HSR 30A, B, C	LH 30EL, EM	MSA 30A	HGW 30CA
H 30FL	HSR 30LA, LB, LC	LH 30GL, GM	MSA 30LA	HGW 30HA
H 35FN	HSR 35A, B, C	LH 35EL, EM	MSA 35A	HGW 35CA
H 35FL	HSR 35LA, LB, LC	LH 35GL, GM	MSA 35LA	HGW 35HA
H 45FN	HSR 45A, B, C	LH 45EL, EM	MSA 45A	HGW 45CA
H 45FL	HSR 45LA, LB, LC	LH 45GL, GM	MSA 45LA	HGW 45HA
H 55FN	HSR 55A, B, C	LH 55EL, EM	MSA 55A	HGW 55CA
H 55FL	HSR 55LA, LB, LC	LH 55GL, GM	MSA 55LA	HGW 55HA
H 15RN H 15RL	HSR 15R HSR 15LR	lh 15an, al lh 15bl, bl	MSA 15S	HGH 15CA
H 20RN	HSR 20R	LH 20AN, AL	MSA 20S	HGH 20CA
H 20RL	HSR 20LR	LH 20BN, BL	MSA 20LS	HGH 20HA
H 25RN	HSR 25R	lh 25an, al	MSA 25S	HGH 25CA
H 25RL	HSR 25LR	lh 25bn, bl	MSA 25LS	HGH 25HA
H 30RN	HSR 30R	LH 30AN, AL	MSA 30S	HGH 30CA
H 30RL	HSR 30LR	LH 30BN, BL	MSA 30LS	HGH 30HA
H 35RN	HSR 35R	lh 35an, al	MSA 35S	HGH 35CA
H 35RL	HSR 35LR	lh 35bn, bl	MSA 35LS	HGH 35HA
H 45RN	HSR 45R	lh 45an, Al	MSA 45S	HGH 45CA
H 45RL	HSR 45LR	lh 45bn, Bl	MSA 45LS	HGH 45HA
H 55RN	HSR 55R	LH 55AN, AL	MSA 55S	HGH 55CA
H 55RL	HSR 55LR	LH 55BN, BL	MSA 55LS	HGH 55HA

WEH 35CA

le Type)	е Туре)									
THK	NSK	PMI	HIWIN	IKO						
HRW 17CA	LW 17EL	-	WEW 17CC	LWFF 33						
HRW 21CA	LW 21EL	MSG 21E	WEW 21CC	LWFF 37						
HRW 27CA	LW 27EL	MSG 27E	WEW 27CC	LWFF 42						
HRW 35CA	LW 35EL	MSG 35E	WEW 35CC	LWFF 69						
HRW 17CR	-	-	WEH 17CA	LWFS 33						
HRW 21CR	-	MSG 21S	WEH 21CA	LWFS 37						
HRW 27CR	-	MSG 27S	WEH 27CA	LWFS 42						

MSG 35S

2. HW Series (Wide Type)

HB 17F

HB 21F

HB 27F

HB 35F

HB 17R HB 21R

HB 27R

HB 35R

HRW 35CR

S Series (Slim Type)

WON	ТНК	NSK	PMI	HIWIN
S 15RC	SR 15V	LS 15CL	MSB 15TS	EGH 15SA
S 15RN	SR 15W	LS 15AL	MSB 15S	EGH 15CA
S 20RC	SR 20V	LS 20CL	MSB 20TS	EGH 20SA
S 20RN	SR 20W	LS 20AL	MSB 20S	EGH 20CA
S 20RC	SR 25V	LS 25CL	MSB 25TS	EGH 25SA
S 20RN	SR 25W	LS 25AL	MSB 25S	EGH 25CA
S 15FC	SR 15SB	LS 15EM	MSB 15TE	EGW 15CA
S 15FN	SR 15TB	LS 15JM	MSB 15E	EGW 15CB
S 20FC	SR 20SB	LS 20EM	MSB 20TE	EGW 20CA
S 20FN	SR 20TB	LS 20JM	MSB 20E	EGW 20CB
S 20FC	SR 25SB	LS 25EM	MSB 25TE	EGW 25CA
S 20FN	SR 25TB	LS 25JM	MSB 25E	EGW 25CB


A

4. M Series (Miniature Standard Type)

WON	THK	NSK	PMI	HIWIN	IKO
M 5C	SRS 5GM	-	-	MGN 5C	LWLC 5
M 5N	SRS 5GN	LU 05TL	-	-	LWL 5
M 7C	SRS 7GS	-	-	-	LWLC 7
M 7N	SRS 7GM	LU 07AL	MSC 7M	MGN 7C	LWL 7
M 7L	SRS 7GN	-	MSC 7LM	MGN 7H	-
M 7LA	-	-	-	-	LWLG 7
M 9C	SRS 9GS	-	-	-	LWLC 9
M 9N	SRS 9GM	LU 09TL	MSC 9M	MGN 9C	LWL 9
M 9L	SRS 9GN	LU 09UL	MSC 9LM	MGN 9H	-
M 9LA	-	-	-	-	LWLG 9
M 12C	SRS 12GS	-	-	-	LWLC 12
M 12N	SRS 12GM	LU 12TL	MSC 12M	MGN 12C	LWL 12
M 12L	SRS 12GN	LU 12UL	MSC 12LM	MGN 12H	LWLG 12
M 15C	SRS 15GS	-	-	-	LWLC 15
M 15N	SRS 15GM	LU 15AL	MSC 15M	MGN 15C	LWL 15
M 15L	SRS 15GN	LU 15BL	MSC 15LM	MGN 15H	LWLG 15
M 20C	-	-	-	-	LWLC 20
M 20N	SRS 20GM	-	-	-	LWL 20
M 20L	-	-	-	-	LWLG 20

MB Series (Miniature Wide Type)

WON	ТНК	NSK	PMI	HIWIN	IKO
MB 5C MB 5N	SRS 5WGM SRS 5WGN	- LE 05AL	-	-	LWLFC 10 LWLF 10
		LE UJAL	_	_	
MB 7C	SRS 7WGS	-	-	-	LWLFC 14
MB 7N	SRS 7WGM	LU 07TL	MSD 7M	MGW 7C	LWLF 14
MB 7L	SRS 7WGN	-	MSD 7LM	MGW 7H	LWLFG 14
MB 9C	SRS 9WGS	-	-	-	LWLFC 18
MB 9N	SRS 9WGM	LE 09TL, TR	MSD 9M	MGW 9C	LWLF 18
MB 9L	SRS 9WGN	-	MSD 9LM	MGW 9H	LWLFG 18
MB 12C	SRS 12WGS	-	-	-	LWLFC 24
MB 12N	SRS 12WGM	LE 12AL, AR	MSD 12M	MGW 12C	LWLF 24
MB 12L	SRS 12WGN	-	MSD 12LM	MGW 12H	LWLFG 24
MB 15C	SRS 15WGS		-	-	LWLFC 42
MB 15N	SRS 15WGM		MSD 15M	MGW 15C	LWLF 42
MB 15N	SRS 15WGN	LE 15AL, AR -	MSD 15LM	MGW 15C MGW 15H	LWLF 42 LWLFG 42

<Table of model number comparison with spacer chain type of a different company>

WON	ТНК	NSK	PMI	HIWIN					
H 15FNS	SHS 15C	SH 15FL	SME 15EA	QHW 15CA					
H 15FLS	SHS 15LC	SH 15HL	SME 15LEA	-					
H 20FNS	SHS 20C	SH 20FL	SME 20EA	QHW 20CA					
H 20FLS	SHS 20LC	SH 20HL	SME 20LEA	QHW 20HA					
H 25FNS	SHS 25C	SH 25FL	SME 25EA	QHW 25CA					
H 25FLS	SHS 25LC	SH 25HL	SME 25LEA	QHW 25HA					
H 30FNS	SHS 30C	SH 30FL	SME 30EA	QHW 30CA					
H 30FLS	SHS 30LC	SH 30HL	SME 30LEA	QHW 30HA					
H 35FNS	SHS 35C	SH 35FL	SME 35EA	QHW 35CA					
H 35FLS	SHS 35LC	SH 35HL	SME 35LEA	QHW 35HA					
H 45FNS	SHS 45C	SH 45FL	SME 45EA	QHW 45CA					
H 45FLS	SHS 45LC	SH 45HL	SME 45LEA	QHW 45HA					
H 55FNS H 55FLS	SHS 55C SHS 55LC	SH 55FL SH 55HL		-					
H 15RNS	SHS 15R	SH 15AN	SME 15SA	QHH 15CA					
H 15RLS	-	SH 15BN	SME 15LSA	-					
H 20RNS	SHS 20V	SH 20AN	SME 20SA	QHH 20CA					
H 20RLS	SHS 20LV	SH 20BN	SME 20LSA	QHH 20HA					
H 25RNS	SHS 25R	SH 25AN	SME 25SA	QHH 25CA					
H 25RLS	SHS 25LR	SH 25BN	SME 25LSA	QHH 25HA					
H 30RNS	SHS 30R	SH 30AN	SME 30SA	QHH 30CA					
H 30RLS	SHS 30LR	SH 30BN	SME 30LSA	QHH 30HA					
H 35RNS	SHS 35R	SH 35AN	SME 35SA	QHH 35CA					
H 35RLS	SHS 35LR	SH 35BN	SME 35LSA	QHH 35HA					

1.H...S Series(Standard Type)

2. S...S Series(Slim Type)

A

WON	ТНК	NSK	PMI	HIWIN
S 15RCS	SSR 15XV	SS 15CL	SME 15EB	QEH 15SA
S 15RNS	SSR 15XW	SS 15AL	SME 15LEB	QEH 15CA
S 20RCS	SSR 20XV	SS 20CL	SME 20EB	QEH 20SA
S 20RNS	SSR 20XW	SS 20AL	SME 20LEB	QEH 20CA
S 25RCS	SSR 25XV	SS 25CL	SME 25EB	QEH 25SA
S 25RNS	SSR 25XW	SS 25AL	SME 25LEB	QEH 25CA
S 15FCS	-	SS 15JM	SME 15SB	QEW 15SA
S 15FNS	SSR 15XTB	SS 15EM	SME 15LSB	QEW 15CA
S 20FCS	-	SS 20JM	SME 20SB	QEW 20SA
S 20FNS	SSR 20XTB	SS 20EM	SME 20LSB	QEW 20CA
S 25FCS	-	SS 25JM	SME 25SB	QEW 25SA
S 25FNS	SSR 25XTB	SS 25EM	SME 25LSB	QEW 25CA

3. HS...S Series(Slim Type)

WON	ТНК
HS 25RNS	SHS 25V
HS 25RLS	SHS 25LV
HS 30RNS	SHS 30V
HS 30RLS	SHS 30LV
HS 35RNS	SHS 35V
HS 35RLS	SHS 35LV

Appendix Contents

1	Conversion Table from International System of Units (SI)	318
2	N-kgf Conversion Table	320
3	kg-lb Conversion Table	321
4	Hardness Conversion Table	322
5	Dimensional Tolerance of Shaft	324
6	Dimensional Tolerance of Housing Hole	326
7	Usage Example of Linear Motion Guide	328
8	Usage Example of Crossed Roller Bearing	336

1. Conversion Table from International System of Units (SI)

A table of comparison between SI, CGS system, and engineering

Amount Unit system	Length	Mass	Time	Temp.	Acceleration	Force	Stress	Pressure	Energy	Power
SI	m	kg	S	K, ℃		Ν	Pa	Pa	J	W
CGS System	cm	g	S	°C	Gal	dyn	dyn/cm ²	dyn/cm ²	erg	erg/s
Engineering Unit System		kgf ∙S²/m		°C	m/s ²	kgf	kgf/m ²	kgf/m ²	kgf∙m	kgf · m/s

Conversion Factor in SI Units

L sus sette	SI Units		Other units than SI		
Length	Name of unit	Symbol	Name of unit	Symbol	Conversion factor in SI units
Angle	Radian	rad	Degree Minute Second	0 3 32	180/π 10 180/π 648 000/π
Length	Meter	m	Micron Angstrom	μ Å	10 ⁶ 10 ¹⁰
Area	Square meter	m²	Are Hectare	a ha	10 ⁻² 10 ⁻⁴
Volume	Cubicmeter	m ³	Liter Deciliter	l' L dl' dL	10 ³ 10 ⁴
Time	Second	S	Minute Hour Day	min h d	1/60 1/3 600 1/86 400
Vibration, Frequency	Hertz	Hz	Cycle	S ⁻¹	1
Revolutions	Revolutions/second	S ²	Revolutions/minute	rpm	60
Speed	Meter/second	m/s	Kilometer/hour Knot	km/h kn	3 600/1000 3 600/1852
Acceleration	Meter/second	m/s	Gal G	Gal G	10 ² 1/9.806 65
Mass	Kilogram	kg	Ton	Т	10 ⁻³
Force	Newton	Ν	Kilogram weight Ton weight Dyne	kgf tf dyn	1/9.806 65 1/(9.806 65 X 10 ³) 10 ²
Torque and force moment	Newton meter	N∙m	Kilogram weight	kgf∙m	1/9.806 65
Stress	Pascal (Newton/square meter)	Pa (N/m)	Kilogram weight/square centimeter Kilogram weight/Millimeter	kgf/cm² kgf/mm²	1/(9.806 65 X 10 ⁴) 1/(9.806 65 X 10 ⁶)

Factor by which the unit is multiplied	Name and syr	mbol of prefix	Factor by which the unit is multiplied	Name and syn	nbol of prefix
10 ¹⁸ 10 ¹⁵ 10 ¹²	Exa Peta Tera	E P T	10 ⁻¹ 10 ⁻² 10 ⁻³	Deci Centi Milli	d c m
10 ⁹ 10 ⁶ 10 ³	Giga Mega Kilo	G M k	10 ⁻⁶ 10 ⁻⁹ 10 ⁻¹²	Micro Nano Pico	μ n p
10 ² 10 ¹	Hecto Deca	h da	10 ⁻¹⁵ 10 ⁻¹⁸	Femto Ato	f a

Conversion Factor in SI Units (cont'd)

Ana av vat	SI unit	S	Otherunits	SI	Companying for the site Clausite
Amount	Name of unit	Symbol	Name of unit	Symbol	Conversion factor in SI units
Pressure	Pascal (Newton/square meter)	Pa (N/m²)	Kilogramweight /square meter Aqua meter Mercury millimeter Torr Bar Atmosphere	kgf/m ² mH ₂ O mmHg Torr bar atm	1/9.806.65 1/(9.806.65X 10 ³) 760/(1.013.25X 10 ⁵) 760/(1.013.25X 10 ⁵) 10 ⁻⁵ 1/(1.013.25X 10 ⁵)
Energy	Joule (Newton meter)	J (N·m)	Erg Calorie (international) Kilogram meter weight Kilowatt-hour Metric horsepower-hour	erg calrr kgf∙m kM∙h PS∙h	10 ⁷ 1/4.1868 1/9.80665 1/(3.6 X 10 ⁶) ≈3.77672 X 10 ⁻⁷
Power	Watt (Newton meter)	W (J/S)	Kilogram/bour kcal/b		1/9.806 1/1.163 ≈1/735.4988
Viscosity, Viscosity Index	Pascal	Pa∙s	Poise	Р	10
Kinetic viscosity, Kinetic viscosity index	Square meter/second	m²/s	Stokes Centistokes	St cSt	10 ⁴ 10 ⁶
Temperature, Temperature difference	Kelvin, Celsius	K, °C	Degree	°C	[See Note (1).]
Current, Magnetomotive force	Ampere	А	Ampere	°C	1
Current, electromotive force	Volt	V	(Watt/Ampere)	(W/A)	1
Magnetic intensity	Ampere/meter	A/m	Oersted	Oe	4π/10 ³
Magnetic flux density	Tesla	Т	Gausas gamma	Gs γ	10 ⁴ 10 ⁹
Electric resistance	Ohm	Ω	Ampere/volt	(V/A)	1

Note (1) Remark

In TK, the temperature conversion to θ° C is θ =T-273.15. In temperature difference, Δ T= $\Delta\theta$. ΔT and $\Delta \theta$ represent the temperature difference measured in Kelvin and Celsius scales, respectively. The name or symbol of a unit in parenthesis is the definition of the unit described above or in the left. An example of conversion 1N=1/9.809 65kgf

Appendix

2. N-kgf Conversion Table

[How to read] For example, if you convert 10N, find '10' in the middle column of the 1st block and read the value on its right side in the column kgf. It is found that 10N is converted into 1.0197kgf. If you convert 10kgf, find '10' in the middle column of the same block and read the value on its left side in the column N, which is 98.066N.

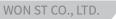
1N=0.1019716kgf 1kgf=9.80665 N

							IK	g1=9.80665 N
N		kgf	Ν		kgf	Ν		kgf
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498
107.87	11	1.1217	431,49	44	4.4868	755.11	77	7.8518
117.68	12	1.2237	441,30	45	4.5887	764.92	78	7.9538
127.49	13	1.3256	451,11	46	4.6907	774.73	79	8.0558
137.29	14	1.4279	460,91	47	4.7927	784.53	80	8.1577
147.10	15	1.5296	470,72	48	4.8946	794.34	81	8.2597
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696
205.94	21	2.1414	529,56	54	5.5065	853.18	87	8.8715
215.75	22	2.2434	539,37	55	5.6084	862.99	88	8.9735
225.55	23	2.3453	549,17	56	5.7104	872.79	89	9.0755
235.36	24	2.4473	558,98	57	5.8124	882.60	90	9.1774
245.17	25	2.5493	568,79	58	5.9144	892.41	91	9.2794
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873
294.20	30	3.0591	617.82	63	6.4242	941.44	96	9.7893
304.01	31	3.1611	627.63	64	6.5262	951.25	97	9.8912
313.81	32	3.2631	637.43	65	6.6282	961.05	98	9.9932
323.62	33	3.3651	647.24	66	6.7301	970.86	99	10.095

3. kg-lb Conversion Table

[How to read]

For example, if you convert 10kg, find '10' in the middle column of the 1st block and read the value on its right side in the column lb. It is found that 10kg is converted into 22.046lb. If you convert 10lb, find '10' in the middle column of the same block and read the value on its left side in the column kg, which is 4.536kg.


1kg=2.2046226lb 1lb=0.45359237kg

	11b=0.45359							
kg		lb	kg		lb	kg		lb
0.454	1	2.205	15.422	34	74.957	30.391	67	147.71
0.907	2	4.409	15.876	35	77.162	30.844	68	149.91
1.361	3	6.614	16.329	36	79.366	31.298	69	152.12
1.814	4	8.818	16.783	37	81.571	31.751	70	154.32
2.268	5	11.023	17.237	38	83.776	32.205	71	156.53
2.722	6	13.228	17.690	39	85.980	32,659	72	158.73
3.175	7	15.432	18.144	40	88.185	33,112	73	160.94
3.629	8	17.637	18.597	41	90.390	33,566	74	163.14
4.082	9	19.842	19.051	42	92.594	34,019	75	165.35
4.536	10	22.046	19.504	43	94.799	34,473	76	167.55
4,990	11	24.251	19.958	44	97.003	34,927	77	169.76
5,443	12	26.455	20.412	45	99.208	35,380	78	171.96
5,897	13	28.660	20.865	46	101.41	35,834	79	174.17
6,350	14	30.865	21.319	47	103.62	36,287	80	176.37
6,804	15	33.069	21.772	48	105.82	36,741	81	178.57
7.257	16	35.274	22.226	49	108.03	37.195	82	180.78
7.711	17	37.479	22.680	50	110.23	37.648	83	182.98
8.165	18	39.683	23.133	51	112.44	38.102	84	185.19
8.618	19	41.888	23.587	52	114.64	38.555	85	187.39
9.072	20	44.092	24.040	53	116.84	39.009	86	189.60
9.525	21	46.297	24.494	54	119.05	39.463	87	191.80
9.979	22	48.502	24.948	55	121.25	39.916	88	194.01
10.433	23	50.706	25.401	56	123.46	40.370	89	196.21
10.886	24	52.911	25.855	57	125.66	40.823	90	198.42
11.340	25	55.116	26.308	58	127.87	41.277	91	200.62
11.793	26	57.320	26.762	59	130.07	41.730	92	202.83
12.247	27	59.525	27.216	60	132.28	42.184	93	205.03
12.701	28	61.729	27.669	61	134.48	42.638	94	207.23
13.154	29	63.934	28.123	62	136.69	43.091	95	209.44
13.608	30	66.139	28.576	63	138.89	43.545	96	211.64
14.061	31	68.343	29.030	64	141.10	43.998	97	213.85
14.515	32	70.548	29.484	65	143.30	44.452	98	216.05
14.969	33	72.753	29.937	66	145.51	44.906	99	218.26

Appendix

4. Hardness Conversion Table

		Brinell H	ardness	Rockwell	Hardness	
Rockwell C Scale Hardness (1 471N)	Vickers Hardness	Standard Ball	Tungsten Carbide Ball	A Scale Load 588.4N(69kgf) Brale Indenter	B Scale Load 980.7N (100kgf) Diameter 1.588mm (1/16in)	Shore Hardness
68 67 66 65 64	940 900 865 832 800	- - - - -	- - 739 722	85.6 85.0 84.5 83.9 83.4	- - - - -	97 95 92 91 88
63 62 61 60 59	772 746 720 697 674	- - - -	705 688 670 654 634	82.8 82.3 81.8 81.2 80.7	- - - -	87 85 83 81 80
58 57 56 55 54	653 633 613 595 577	- - - -	615 595 577 560 543	80.1 79.6 79.0 78.5 78.0	- - - - -	78 76 75 74 72
53 52 51 50 49	560 544 528 513 498	- 500 487 475 464	525 512 496 481 469	77.4 76.8 76.3 75.9 75.2	- - - - -	71 69 68 67 66
48 47 46 45 44	484 471 458 446 434	451 442 432 421 409	455 443 432 421 409	74.7 74.1 73.6 73.1 72.5	- - - - -	64 63 62 60 58
43 42 41 40 39	423 412 402 392 382	400 390 381 371 362	400 390 381 371 362	72.0 71.5 70.9 70.4 69.9	- - - -	57 56 55 54 52

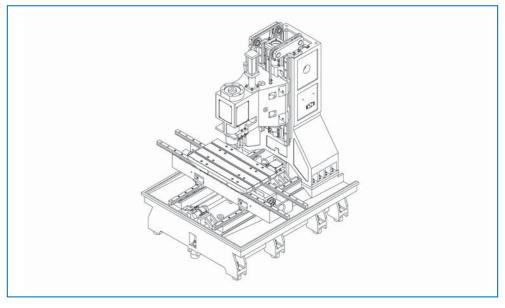
		Brinell H	ardness	Rockwell	Hardness	
Rockwell C Scale Hardness (1 471N)	Vickers Hardness	Standard Ball	Tungsten Carbide Ball	A Scale Load 588.4N(69kgf) Brale Indenter	B Scale Load 980.7N (100kgf) Diameter 1.588mm (1/16in)	Shore Hardness
38 37 36 35 34	372 363 354 345 336	353 344 336 327 319	353 344 336 327 319	69.4 68.9 68.4 67.9 67.4	- (109.0) (108.5) (108.0)	51 50 49 48 47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	-	96.7	33
(16)	222	212	212	-	95.5	32
(14)	213	203	203	-	93.9	31
(12)	204	194	194	-	92.3	29
(10) (8) (6) (4) (2) (0)	196 188 180 173 166 160	187 179 171 165 158 152	187 179 171 165 158 152	- - - - -	90.7 89.5 87.1 85.5 83.5 81.7	28 27 26 25 24 24 24

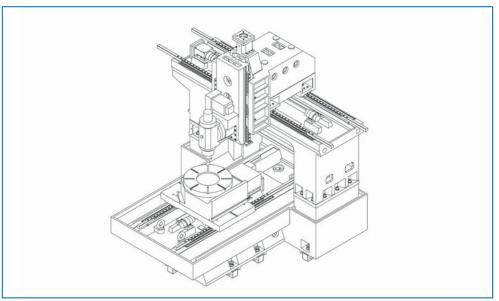
5. Dimensional Tolerance of Shaft

Diamet	er (mm)	d6	e6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
Above	Below	ao	eo		уэ	go	сп	no	n <i>r</i>	no	nə	niu	Jso	JSO
3	6	-30 -38	-20 -28	-10 -18	-4 -9	-4 -12	0 5	0 8	0 —12	0 —18	0 30	0 48	±2 <u>.</u> 5	±4
6	10	-40 -49	-25 -34	-13 -22	5 11	5 14	0 - 6	0 —9	0 - 15	0 - 22	0 36	0 58	±3	±4.5
10	18	-50 -61	-32 -43	-16 -27	6 14	6 17	0 8	0 —11	0 —18	0 - 27	0 - 43	0 70	±4	±5.5
18	30	65 78	-40 -53	-20 -33	-7 -16	-7 -20	0 9	0 —13	0 21	0 33	0 - 52	0 84	±4 <u>.</u> 5	±6.5
30	50	-80 -96	-50 -66	-25 -41	9 20	9 25	0 —11	0 —16	0 25	0 39	0 62	0 —100	±5 <u>.</u> 5	±8
50	80	100 119	-60 -79	-30 -49	-10 -23	-10 -29	0 —13	0 —19	0 30	0 46	0 74	0 120	±6 <u>.</u> 5	±9.5
80	120	-120 -142	-72 -94	-36 -58	-12 -27	-12 -34	0 15	0 22	0 35	0 - 54	0 - 87	0 —140	±7.5	±11
120	180	-145 -170	-85 -110	-43 -68	-14 -32	-14 -39	0 18	0 25	0 40	0 63	0 100	0 —160	±9	±12 <u>.</u> 5
180	250	—170 —199	-100 -129	-50 -79	-15 -35	- 15 -44	0 20	0 29	0 46	0 72	0 —115	0 —185	±10	±14.5
250	315	190 222	-110 -142	56 88	-17 -40	-17 -49	0 23	0 32	0 52	0 81	0 —130	0 - 210	±11 <u>.</u> 5	±16
315	400	-210 -246	-125 -161	-62 -98	18 43	- 18 -54	0 25	0 36	0 57	0 89	0 —140	0 230	±12.5	±18
400	500	-230 -270	- 135 -175	-68 -108	-20 -47	-20 -60	0 27	0 40	0 63	0 97	0 - 155	0 250	±13 <u>.</u> 5	±20
500	630	-260 -304	145 189	76 120	_	-22 -66	-	0 44	0 70	0 —110	0 —175	0 280	_	±22
630	800	-290 -340	160 210	-80 -130	_	-24 -74	-	0 50	0 80	0 125	0 200	0 320	_	±25
800	1000	-320 -376	170 226	86 142	_	-26 -82	-	0 56	0 90	0 140	0 230	0 360	_	±28
1000	1250	-350 -416	195 261	-98 -164	-	-28 -94	-	0 66	0 105	0 —165	0 260	0 420	_	±33
1250	1600	390 468	-220 -298	110 188	_	-30 -108	_	0 78	0 125	0 —195	0 310	0 500	-	±39
1600	2000	-430 -522	-240 -332	-120 -212	-	-32 -124	-	0 92	0 150	0 230	0 370	0 600	-	±46

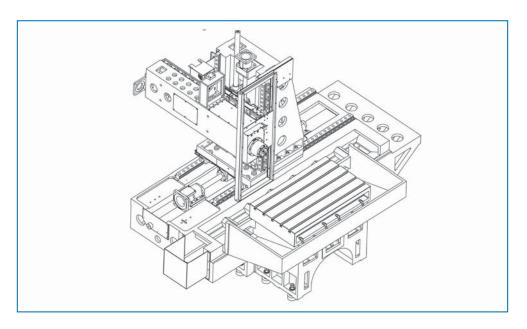
j5	j6	j7	k5	k6	k7	m5	m6	n6	р6	r6	r7	Diamet	er (mm)
												Above	Below
+3 -2	+6 -2	+8 -4	+6 +1	+9 +1	+13 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +15	3	6
+4 -2	+7 - 2	+10 -5	+7 +1	+10 +1	+16 +1	+12 +6	+15 +6	+19 +10	+24 +15	+28 +19	+34 +19	6	10
+5 -3	+8 -3	+12 -6	+9 +1	+12 +1	+19 +1	+15 +7	+18 +7	+23 +12	+29 +18	+34 +23	+41 +23	10	18
+5 -4	+9 -4	+13 -8	+11 +2	+15 +2	+23 +2	+17 +8	+21 +8	+28 +15	+35 +22	+41 +28	+49 +28	18	30
+6 -5	+11 -5	+15 -10	+13 +2	+18 +2	+27 +2	+20 +9	+25 +9	+33 +17	+42 +26	+50 +34	+59 +34	30	50
+6	+12	+18	+15	+21	+32	+24	+30	+39	+51	+60 +41	+71 +41	50	65
-7	-7	-12	+ 2	+ 2	+ 2	+ 11	+ 11	+20	+32	+62 +43	+73 +43	65	80
+6	+13	+20	+18	+25	+38	+28	+35	+45	+59	+73 +51	+86 +51	80	100
-9	-9	-15	+3	+ 3	+ 3	+13	+13	+23	+37	+76 +54	+89 +54	100	120
_										+88 +63	+103 +63	120	140
+7 11	+14 11	+22 18	+21 + 3	+28 + 3	+43 + 3	+33 +15	+40 +15	+52 +27	+68 +43	+90 +65	+105 +65	140	160
11		10	10	10	10	110	10	121	140	+93 +68	+108 +68	160	180
										+106 +77	+123 +77	180	200
+7 13	+16 13	+25 -21	+24 + 4	+33 + 4	+50 + 4	+37 +17	+46 + 17	+60 +31	+79 +50	+109 +80	+126 +80	200	225
10	10	21	14	14	14	' 17	1 17	101	100	+113 +84	+130 +84	225	250
+7	140	1.00	+27	+36	+56	+43	+52	+66	+88	+126 +94	+146 +94	250	280
-16	±16	±26	+ 4	+ 4	+ 4	+20	+20	+34	+56	+130 +98	+150 +98	280	315
+7	±10	+29	+29	+40	+61	+46	+57	+73	+98	+144 +108	+165 +108	315	355
-18	±18	-28	+ 4	+ 4	+ 4	+21	+21	+37	+62	+150 +114	+171 +114	355	400
+7	1.00	+31	+32	+45	+68	+50	+63	+80	+108	+166 +126	+189 +126	400	450
-20	±20	-32	+ 5	+ 5	+ 5	+23	+23	+40	+68	+172 +132	+195 +132	450	500
				+44	+70		+70	+88	+122	+194 +150	+220 +150	500	560
-	-	-	_	0	0	_	+26	+44	+78	+199 +155	+225 +155	560	630
				+50	+80		+80	+100	+138	+225 +175	+255 +175	630	710
-	-	-	_	0	0	_	+30	+ 50	+88	+235 +185	+265 +185	710	800
				+56	+90		+90	+112	+156	+266 +210	+300 +210	800	900
-	-	-	_	0	0	_	+34	+56	+100	+276 +220	+310 +220	900	1000
				+66	+105		+106	+132	+186	+316 +250	+355 +250	1000	1120
_	_	_	_	0	0	_	+ 40	+66	+120	+326 +260	+365 +260	1120	1250
				+78	+125		+126	+156	+218	+378 +300	+425 +300	1250	1400
_	_	_	_	0	0	_	+ 48	+78	+140	+408 +330	+455 +330	1400	1600
				+92	+150		+150	+184	+262	+462 +370	+520 +370	1600	1800
	_	_	_	0	0	_	+ 58	+92	+170	+492 +400	+550 +400	1800	2000

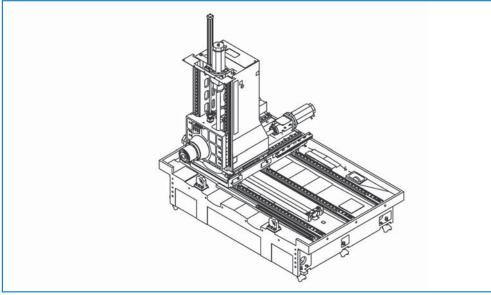
1

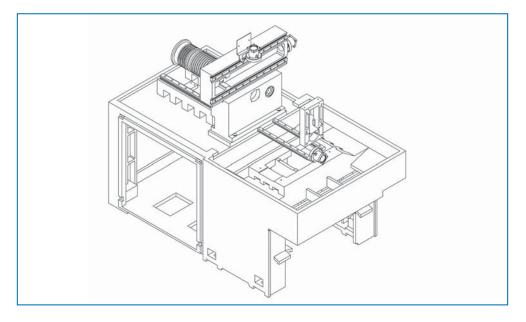

6. Dimensional Tolerance of Housing Hole

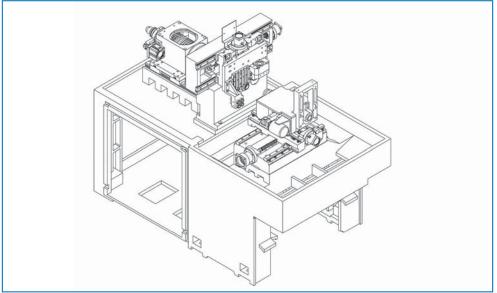

Diamet	er (mm)	E6	F6	F7	G6	G7	H6	H7	H8	J6	J7	JS6	JS7
Above	Below	EO	го	Г/	GO	G7	по	Π/	по	00	JI	120	101
10	18	+43 +32	+27 +16	+34 +16	+17 + 6	+24 + 6	+11 0	+18 0	+27 0	+6 -5	+10 8	±5 <u>.</u> 5	±9
18	30	+53 +40	+33 +20	+41 +20	+20 + 7	+28 + 7	+13 0	+21 0	+33 0	+8 -5	+12 -9	±6 <u>.</u> 5	±10.5
30	50	+66 +50	+41 +25	+50 +25	+25 + 9	+34 + 9	+16 0	+25 0	+39 0	+10 - 6	+14 11	±8	±12 <u>.</u> 5
50	80	+79 +60	+49 +30	+60 +30	+29 +10	+40 +10	+19 0	+30 0	+46 0	+13 - 6	+18 -12	±9 <u>.</u> 5	±15
80	120	+94 +72	+58 +36	+71 +36	+34 +12	+47 +12	+22 0	+35 0	+54 0	+16 - 6	+22 -13	±11	±17.5
120	180	+110 +85	+68 +43	+83 +43	+39 +14	+54 +14	+25 0	+40 0	+63 0	+18 -7	+26 -14	±12 <u>.</u> 5	±20
180	250	+129 +100	+79 +50	+96 +50	+44 +15	+61 +15	+29 0	+46 0	+72 0	+22 - 7	+30 -16	±14 <u>.</u> 5	±23
250	315	+142 +110	+88 +56	+108 + 56	+49 +17	+69 +17	+32 0	+52 0	+81 0	+25 - 7	+36 -16	±16	±26
315	400	+161 +125	+98 +62	+119 +62	+54 +18	+75 +18	+36 0	+57 0	+89 0	+29 - 7	+39 18	±18	±28 <u>.</u> 5
400	500	+175 +135	+108 +68	+131 +68	+60 +20	+83 +20	+40 0	+63 0	+97 0	+33 - 7	+43 - 20	±20	±31 <u>.</u> 5
500	630	+189 +145	+120 +76	+146 +76	+66 +22	+92 +22	+44 0	+70 0	+110 0	-	-	±22	±35
630	800	+210 +160	+130 +80	+160 +80	+74 +24	+104 + 24	+50 0	+80 0	+125 0	-	-	±25	±40
800	1000	+226 +170	+142 +86	+176 +86	+82 +26	+116 +26	+56 0	+90 0	+140 0	-	-	±28	±45
1000	1250	+261 +195	+164 +98	+203 + 98	+94 +28	+133 + 28	+66 0	+105 0	+165 0	-	-	±33	±52 <u>.</u> 5
1250	1600	+298 +220	+188 +110	+235 +110	+108 +30	+155 + 30	+78 0	+125 0	+195 0	-	-	±39	±62 <u>.</u> 5
1600	2000	+332 +240	+212 +120	+270 +120	+124 +32	+182 + 32	+92 0	+150 0	+230 0	-	-	±46	±75
2000	2500	+370 +260	+240 +130	+305 +130	+144 +34	+209 + 34	+110 0	+175 0	+280 0	_	_	±55	±87 <u>.</u> 5

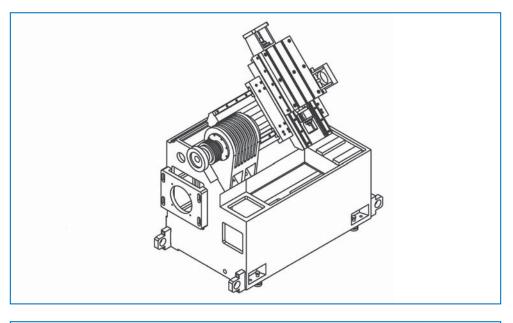
K5	K6	K7	М5	M6	M7	N5	N6	N7	P6	P7	Diamet	er (mm)
											Above	Below
+2 -6	+2 -9	+6 -12	-4 -12	-4 -15	0 18	-9 -17	- 9 -20	- 5 -23	15 26	-11 -29	10	18
+1 8	+2 11	+6 - 15	5 14	-4 -17	0 21	-12 -21	- 11 -24	- 7 -28	18 31	-14 -35	18	30
+2 -9	+3 - 13	+7 - 18	5 16	-4 -20	0 - 25	-13 -24	-12 -28	- 8 -33	-21 -37	-17 -42	30	50
+3 -10	+4 - 15	+9 21	6 19	5 24	0 30	15 28	-14 -33	- 9 -39	-26 -45	-21 -51	50	80
+ 2 - 13	+4 - 18	+10 - 25	8 23	6 28	0 35	18 33	-16 -38	-10 -45	-30 -52	-24 -59	80	120
+3 - 15	+4 - 21	+12 - 28	9 27	8 33	0 40	-21 -39	-20 -45	-12 -52	-36 -61	-28 -68	120	180
+ 2 18	+5 - 24	+13 -33	-11 -31	8 37	0 46	-25 -45	-22 -51	-14 -60	-41 -70	-33 -79	180	250
+ 3 - 20	+5 - 27	+16 - 36	-13 -36	-9 -41	0 - 52	-27 -50	- 25 -57	-14 -66	-47 -79	-36 -88	250	315
+ 3 -22	+7 29	+17 - 40	-14 -39	-10 -46	0 57	-30 -55	- 26 -62	16 73	51 87	-41 -98	315	400
+ 2 -25	+8 -32	+18 - 45	16 43	-10 -50	0 63	-33 -60	-27 -67	- 17 80	55 95	-45 -108	400	500
-	0 44	0 70	-	-26 -70	-26 -96	_	-44 -88	-44 -114	-78 -122	78 148	500	630
-	0 - 50	0 80	-	-30 -80	- 30 -110	_	- 50 -100	- 50 -130	88 138	88 168	630	800
-	0 - 56	0 90	-	-34 -90	- 34 -124	_	- 56 112	- 56 -146	-100 -156	-100 -190	800	1000
-	0 66	0 105	-	- 40 -106	- 40 -145	_	- 66 -132	-66 -171	-120 -186	-120 -225	1000	1250
-	0 78	0 125	-	-48 -126	- 48 -173	_	- 78 -156	- 78 -203	140 218	-140 -265	1250	1600
-	0 92	0 150	-	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	-170 -320	1600	2000
-	0 —110	0 —175	-	-68 -178	- 68 -243	-	110 220	-110 -285	195 305	195 370	2000	2500

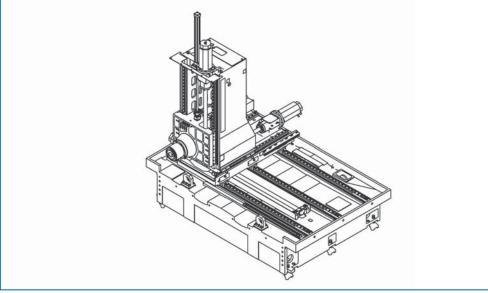

7. Usage Example of Linear Motion Guide

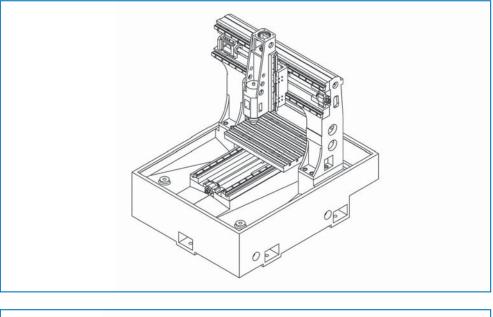


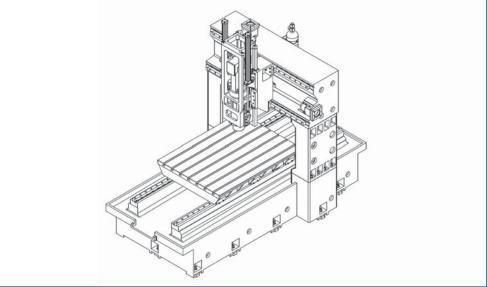


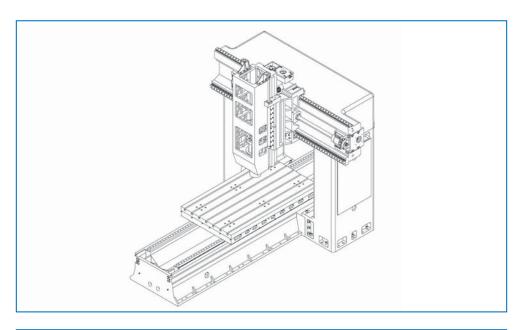


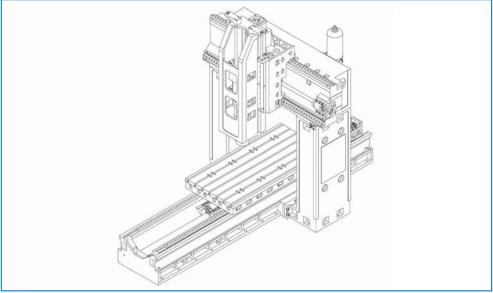


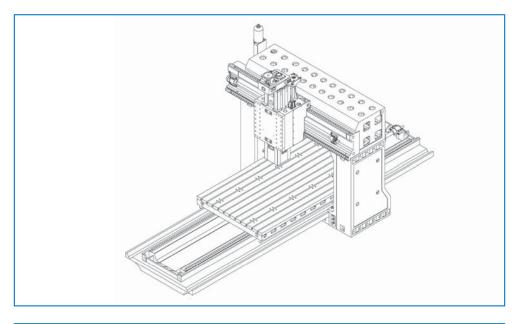


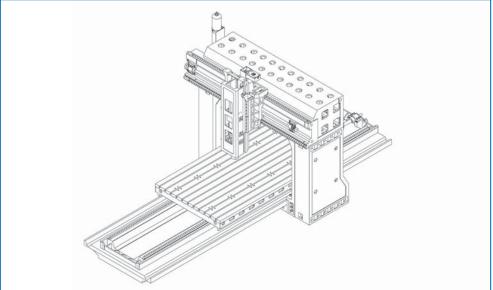


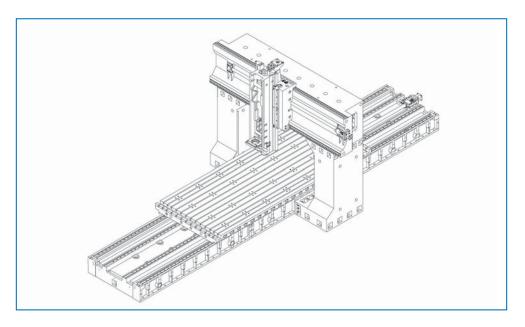


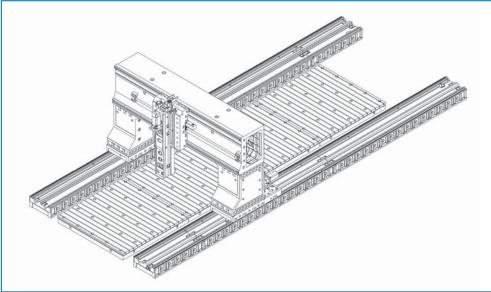




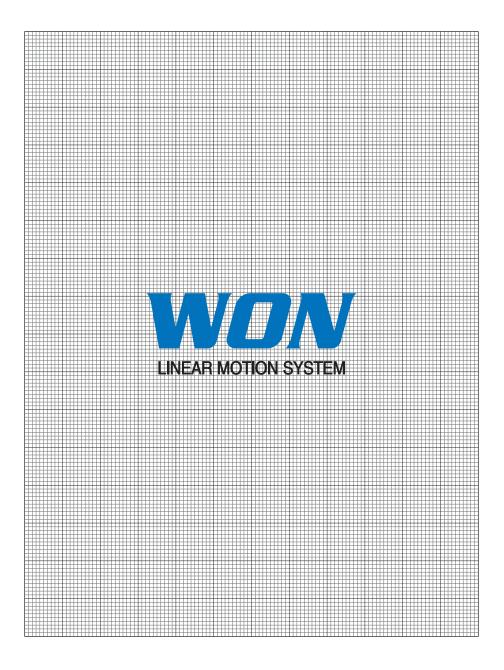





Appendix



WON ST CO., LTD.



MEMO

LINEAR MOTION SYSTEM

The first edition published in April 2014

The 12th revised edition printed first in June 2022 The 12th revised edition published first in July 2022

W202206-14

We do our best to write our catalog rightly. For improvements, it is possible to change product appearance and specifications without any notice.

We are not responsible for any damage caused by any typo found in the catalog, please contact us before your adoption.